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SUMMARY 

 

 Although the airline industry has drastically changed since its deregulation in 

1978, publically available sources of data have remained nearly the same. In the U.S., 

most researchers and decision-makers rely on government data that contains highly 

aggregated price information (e.g., average quarterly prices). However, aggregate data 

can hide important market behavior. With the emergence of online distribution channels, 

there is a new opportunity to model air travel demand using detailed price information.    

 This dissertation uses online prices and seat maps to build a dataset of daily prices 

and bookings at the flight-level. Several research contributions are made, all related to 

leveraging online data to better understand airline pricing and product strategies, and how 

these strategies impact customers, as well as the industry in general. One major 

contribution is the finding that the recent product debundling trend in the U.S. airline 

industry has diluted revenues to the U.S. Airport and Airways Trust Fund by at least five 

percent.  

 Additionally, several new behavioral insights are found for one debundling trend 

that has been widely adopted by U.S. airlines: seat reservation fees. Customers are found 

to be between 2 and 3.3 times more likely to purchase premium coach seats (with extra 

legroom and early boarding privileges) when there are no regular coach window or aisle 

seats that can be reserved for free, suggesting that the ability of airlines to charge seat 

fees is strongly tied to load factors. Model results are used to explore optimal seat fees 

and find that an optimal static fee could increase revenues by 8 percent, whereas optimal 

dynamic fees could increase revenues by 10.2 percent.  

 xii



 xiii

 Another major contribution is in modeling daily bookings and estimating price 

elasticities using ordinary least squares (OLS) regression without correcting for price 

endogeneity and two-stage least squares (2SLS) regression, which corrects for 

endogeneity. Results highlight the importance of correcting for price endogeneity (which 

is not often done in air travel applications). In particular, models that do not correct for 

endogeneity find inelastic demand estimates whereas models that do correct for 

endogeneity find elastic demand estimates. This is important, as pricing 

recommendations differ for inelastic and elastic models. A set of instrumental variables 

are found to pass validity tests and can be used to correct for price endogeneity in future 

models of daily flight-level demand. 

 

 

 



 

CHAPTER 1: INTRODUCTION 

 

1.1. Background and Motivation 

Since deregulation (which occurred in the United States in 1978), the airline industry has 

faced a large number of changes. Competition has been transformed by low cost carriers 

(LCCs) that typically offer lower prices than legacy carriers. Between 2000 and 2008, the 

number of domestic passengers served by LCCs grew at an average annual rate of 11 

percent, whereas during this same time period many legacy carriers experienced 

declining figures. Also during this time period, LCCs increased their weekly flight 

departures and cities served by 60 percent. Traditionally, LCCs mainly targeted price-

sensitive leisure passengers. However, LCCs are beginning to target business passengers 

by flying in heavily traveled business routes (Steenland, 2008).   

 In addition to increased competition from LCCs, the internet has also transformed 

the airline industry, leading to pricing transparency. Online travel agents such as 

Expedia®, Orbitz®, and Travelocity® make it easy for customers to search the prices of 

multiple airlines across multiple departure dates. Customers can quickly search for and 

purchase the lowest possible fare. In fact, 60 percent of leisure travelers report that they 

purchase the lowest fare they can find (Harteveldt et al., 2004; PhoCusWright, 2004). An 

increasing number of purchases are being made through the internet. For example, in 

1998, approximately one percent of domestic leisure bookings were sold through the 

internet, but by 2005 the percentage of domestic leisure bookings made online had 

increased to 35 percent (Brunger and Perelli, 2008). 

1 



 The growth of LCCs combined with the increased transparency of airfares has 

led, at least in part, to lower average prices in the airline industry. Airlines have not been 

able to increase fares at a rate that keeps up with inflation. In the first 30 years after 

passenger deregulation, domestic airline prices fell 41.2 percent in real terms (ATA, 

2010).  

 In addition to increased competition from low cost carriers and increased use of 

the internet as a major distribution channel, airlines also faced a series of financial 

challenges in the first decade of the 21st century, including unprecedented fuel costs, 

continued security threats post 9/11, health outbreaks (SARS, H1N1), economic 

recessions, and the global financial crisis. Due to the numerous industry changes and 

financial challenges, airlines have struggled to remain profitable. Between 2000 and 

2010, the seven largest U.S. network carriers1 collectively lost $35.1 billion (U.S. DOT, 

2010), and four of these carriers went into bankruptcy2. As a result, widespread industry 

consolidation has taken place, as five major mergers/acquisitions3 involving nine carriers 

were initiated between 2005 and 2012. 

 In response to the financial challenges in the first decade of the 21st century, 

airlines began debundling services that were once included in the base price of a ticket, 

including new fees for checked baggage, seat reservations, and food. Additionally, the 

                                                 

 
 
 
 
 
1 Alaska, American, Continental, Delta, Northwest, United, and US Airways. 
2 Delta, Northwest, United, and US Airways filed for bankruptcy. 
3 Mergers/acquisitions took place between America West and US Airways in 2005; Delta and Northwest in 
2008; Continental and United in 2010; Southwest and AirTran in 2011; US Airways and American in 2012. 
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cost of existing ancillary services were increased, including fees for services such as 

redeeming mileage award tickets, exchanging tickets, and checking pets. Revenues from 

ancillary fees have rapidly increased in the past few years. From 2007-2011 ancillary 

revenues reported by U.S. carriers with operating revenues over $20 million grew from 

$3.6 billion to $9.8 billion (U.S. DOT, 2012), and similar trends are observed worldwide. 

Ancillary services provide an important revenue source that can help carriers achieve 

profitability.  For example, in 2011 JetBlue reported a net profit of $86 million and seat 

fee revenues of more than $120 million (JetBlue Airways, 2011).  

 Although the airline industry has drastically changed since its deregulation, and 

especially within the last decade, publically available sources of data have not changed. 

Most researchers and decision-makers currently rely on government datasets to answer 

questions about airline pricing, demand and competition. These government data sources 

provide highly aggregated data. For example, the U.S. Department of Transportation’s 

Origin and Destination Survey Databank 1A/1B (which contains a 10% random sample 

of tickets sold in the U.S.) provides information on average quarterly market-level prices 

by airline. However, airlines are constantly changing prices in response to demand, often 

many times per day.  

 The lack of disaggregate data sources has hindered the ability to fully understand 

or to even explore many relevant questions. For example, how do mergers (and/or the 

degree of competition) impact airline prices? What factors related to seat reservation fees 

impact customer purchasing behavior? Will the debundling trend dilute revenues to the 

U.S. Airport and Airways Trust Fund? How do daily flight prices (and competitor 

prices/promotions) influence daily demand? 

 3



 With the emergence of online booking, there is a new opportunity to collect 

detailed data. Several firms, such as QL2® and Infare Solutions collect pricing data from 

online and from other channels and sell this data to airlines. In turn, airlines use this 

information to inform their day-to-day pricing and revenue management decisions. 

Airline websites can be used to compare airlines’ product offerings and fee policies for 

ancillary services, which provides important insights into how different carriers are 

approaching ancillary revenues. Airline websites can also be used to track the prices of 

multiple airlines over the booking horizon, which provides insights into airlines’ 

competitive pricing strategies across different market structures (such as monopolies 

versus more competitive markets). Airline websites can also provide insights into how 

different airlines respond when a competitor drops or increases prices. Further, airline 

websites can be used to track online seat maps. By looking at the daily changes of 

“reserved” vs. “available” seats displayed to customers on online seat maps, an estimate 

for daily flight-level bookings (a measure of demand) can be captured. By leveraging the 

internet, disaggregate databases can be used to explore research questions at a finer level 

of detail. 

 

1.2. Research Objectives 

There are four main research objectives of this dissertation. Each objective is related to 

leveraging online data to better understand airline pricing and product strategies, and how 

these strategies impact customers, as well as the industry in general.  

 The first research objective is to study the relationship between airline prices and 

competitive market structures (such as monopolies, duopolies, and oligopolies both with 

 4



and without low cost carrier competition). With so much recent industry consolidation, it 

is important to understand how competition among air carriers impacts prices offered to 

customers, as this relationship will directly impact the formation of future policies 

associated with competition policy (anti-trust), deregulation, and mergers. As part of this 

objective, airline pricing is analyzed using a dataset of disaggregate online pricing data 

for 62 markets across a range of different market structure types.  

 The second objective is to identify and review product debundling trends that 

have recently occurred in the U.S. airline industry. Information pertaining to carriers’ 

products is obtained from airline websites and implications of multiple sources of 

ancillary fees (related to ticketing refunds and exchanges, checked baggage, on-board 

pets, preferred and/or advanced seating assignments, frequent flyer ticket redemptions, 

and day of departure standby policies) are discussed. Part of this objective is to better 

understand how product offerings are changing, and to better understand how these 

trends may potentially impact the industry, such as diluting revenues to the U.S. Airport 

and Airways Trust Fund and impacting other system performance objectives (such as 

minimizing the number of misconnecting passengers). 

  The third objective focuses on one debundling trend that has been widely adopted 

by U.S. airlines: seat reservation fees. The objective is to investigate factors that 

influence airline customers’ premium coach seat purchases and to estimate revenue 

impacts of different seat pricing strategies. Using a database of online prices and seat 

map displays collected from JetBlue’s website, a binary logit model is used to estimate 

the probability of purchasing a premium coach seat with extra legroom, given that a 

ticket was purchased. Variables included in the analysis include the amount of the seat 
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fee, how far in advance the ticket is purchased, the number of passengers traveling 

together, and load factors (as revealed through seat map displays).  The model results are 

used to estimate revenue impacts associated with different pricing structures, such as 

dynamically pricing seats as a function of time until flight departure. 

 The fourth, and final, objective has two interrelated parts. The first piece of the 

objective is to determine whether it is possible to use online prices and seat maps to build 

detailed flight-level models of daily bookings. However, within the airline industry, most 

demand studies have failed to address price endogeneity and have assumed that prices are 

exogenous, which contradicts basic economic theory of supply and demand4. Failing to 

address price endogeneity can lead to models with biased coefficient estimates, which 

can be misleading when making policy decisions. Therefore, price endogeneity is an 

important methodological consideration that must be addressed. The second piece of the 

objective is to correct for price endogeneity in the demand model by finding a valid set of 

instrumental variables that can be used with instrumental variable estimation methods, 

such as two-stage least squares regression. Instrumented variable methods allow for 

consistent parameter estimation when an endogenous variable is present. Price elasticities 

can then be estimated across different dimensions of the data, including advanced 

purchase ranges.     

                                                 

 
 
 
 
 
4 Price endogeneity will be discussed in more detail later in Chapter 5. Basically, price is endogenous when 
price influences demand, but demand also influences price. We know that airlines use revenue management 
strategies that set prices in response to changes in demand, indicating that prices should be endogenous. 
Assuming that price is exogenous assumes that demand does not influence price, which is not the case in 
most economic models of supply and demand. 
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1.3. Major Contributions 

There are several major contributions of this dissertation. Perhaps most importantly from 

a public policy perspective, this dissertation demonstrates the importance of disaggregate 

data that describe individual airline behavior and prices. Much public policy discussion 

and analysis relies on average market values that can hide important market behavior. 

With the advent of internet-based ticketing, a powerful tool now exists that can be used to 

understand some of the finer detail of airline markets and competition.  This enhances the 

ability of regulators, government officials, academics and airlines to better understand 

issues related to fares and customer service and to make more informed decisions and/or 

policies. 

 Another major contribution is in respect to the recent product debundling trends 

that have occurred in the U.S. airline industry. Specifically, we estimate that the 

debundling phenomenon has diluted revenues to the U.S. Airport and Airways Trust 

Fund (AATF) by at least five percent. This is important as the AATF finances 

investments in the airport and airway system. The AATF was established as a source of 

funding that would increase concurrently with the use of the system, and assure timely 

and long-term commitments to capacity increases. The finding that debundling has 

diluted revenues to the AATF means that policy-makers may need to consider taxing 

ancillary fees in the future in order to maintain the viability of the fund. 

 Another major contribution provides several new behavioral insights into seat 

reservation fees. Seat fees are currently causing tensions among customers, regulatory 

agencies, and airlines. Customers and regulatory agencies are focusing on the importance 

of fee transparency and fairness, but airlines want to add complexity to further 

 7



differentiate fees across customer groups (e.g., by blocking premium seats for preferred 

customers) so as to capture more of the consumer surplus. We find that customers are 

between 2 and 3.3 times more likely to purchase premium coach seats (with extra 

legroom and early boarding privileges) when there are no regular coach window or aisle 

seats that can be reserved for free, suggesting that the ability of airlines to charge seat 

fees is strongly tied to load factors. In an environment in which load factors are high, the 

airlines’ ability to generate revenues from seat fees is strong. However, in the future if 

load factors decrease, we would expect that the incremental revenues generated from seat 

fee reservations would also decrease, which is something that airlines should consider 

before investing in reconfigurations of airplane seats. We also find that customers who 

purchase tickets closer to the departure date are willing to pay higher seat fees. We use 

these model results to show that JetBlue’s seat fees are currently underpriced in many 

markets; an optimal static fee would increase revenues by 8 percent whereas optimal 

dynamic fees would increase revenues by 10.2 percent. In addition, if JetBlue were to 

leave their seat fees unchanged and instead blocked certain rows of seats for premier 

customers, they could potentially increase revenues by 12.8%.  This finding underscores 

the importance of ensuring customers are not inadvertently misled into purchasing 

premium seats by seat map displays that block seats for premier customers. 

 Another major contribution is in modeling daily bookings and estimating airfare 

price elasticities using daily online prices and seat maps from airline websites. Using this 

data, we estimate airfare price elasticity using ordinary least squares (OLS) regression 

without correcting for price endogeneity and two-stage least squares (2SLS) regression 

which corrects for endogeneity. Results show the importance of correcting for price 
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endogeneity.  In particular, models that do not correct for endogeneity find inelastic 

demand estimates whereas models that do correct for endogeneity find elastic demand 

estimates.  This is important, as pricing recommendations differ for inelastic and elastic 

models. Further, a set of instruments are found to pass validity tests and can be used in 

future models of daily flight-level demand. To our knowledge, this is the first time online 

seat maps have been used to estimate price elasticities, and this is also one of the first 

studies to correct for price endogeneity in models of airline demand.  

 

1.4. Dissertation Structure 

The chapters of this dissertation are written in journal format. Each chapter begins with 

an abstract, followed by background and motivation for the research, a discussion of 

methodologies used, and main findings. Each chapter concludes with a discussion of 

implications (for public policy, customers, and/or airlines), future research directions, and 

a list of referenced literature.     

 Chapter 2 explores competitive airline pricing policies in markets with different 

types of competitive market structures using a dataset of online prices from 2007. This 

chapter was published in Transportation Research Record as part of the Airport 

Cooperative Research Program’s Graduate Research Award Program on Public-Sector 

Aviation Issues (Mumbower and Garrow, 2010).  

 Chapter 3 reviews product debundling trends that were quickly being 

implemented in the airline industry in 2009-2010 (Garrow, Hotle and Mumbower, 2012). 

Chapter 4 focuses on one popular debundling trend, seat reservation fees, and models 

airline customers' premium coach seat purchases using a database of online prices and 
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seat maps collected from JetBlue’s website in 2010. Revenue implications for optimal 

pricing strategies are further explored (Mumbower, Garrow and Newman, 2013).  

 Chapter 5 reviews the concept of price endogeneity in demand models, discusses 

endogeneity bias, and explains how instrumental variable methods can be used to correct 

for price endogeneity. Chapter 6 uses the methods discussed in Chapter 5 to correct for 

price endogeneity in linear models of disaggregate flight-level demand. Price elasticities 

are then estimated across several dimensions of the data, including different advance 

purchase ranges.   

 This dissertation also includes Appendix A, which provides more detailed 

information about an online dataset of competitor prices that was compiled using 

automated web client robots. This dataset was used to formulate the set of instrumental 

variables used to correct for endogeneity in the demand models of Chapter 6. We hope to 

address research gaps by making this dataset publically available for other researchers to 

use (Mumbower and Garrow, 2013). The dataset contains pricing information over a four 

week booking horizon for 42 U.S. markets and 21 departure dates in September of 2010, 

which amounts to over 228,000 price observations. 
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CHAPTER 2: COMPETITIVE AIRLINE PRICING POLICIES 

 

Mumbower, S. and Garrow, L.A. (2010) Using online data to explore competitive airline 
pricing policies: A case study approach. Transportation Research Record: 
Journal of the Transportation Research Board, 2184, 1-12. 

 

2.1. Abstract 

Since the mid 2000’s, the airline industry has seen volatile fuel prices, a record number of 

carriers ending service, and a merger between two major airlines. In a time of such 

turmoil in the industry it is increasingly important to understand the relationship between 

airline consolidation and competitive pricing policies, as this relationship will directly 

impact the formation of future airline policies associated with competition policy (anti-

trust), deregulation, and mergers. However, there is a lack of consensus about market 

concentration and its influence on airfares, mainly due to data limitations of past 

research. Given the emergence of online booking engines, there is a new opportunity to 

collect detailed fare data. This project uses disaggregate, online airfare data to study the 

relationship between market concentration and pricing policies. The dataset includes 62 

markets that cover a broad range of market structures. A case study approach is used to 

analyze the data. Using disaggregate fare data, this study finds low price dispersion can 

be associated with both low and high levels of market concentration. As the day of 

departure approaches, price dispersion is seen to either increase or decrease, depending 

on the specific market. Additionally, peak and off-peak periods demonstrate differing 

pricing strategies. Also, markets with codeshares are shown to sometimes exhibit 

unusually high price dispersion. 
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2.2. Background 

Since its deregulation in 1978, the airline industry has seen a large number of changes. 

Low cost carriers (LCCs) have penetrated the market and generally offer lower prices 

than legacy carriers, mainly due to their significantly lower operating costs5. Between 

2000 and 2008, the number of domestic passengers served by LCCs grew at an average 

annual rate of 11 percent, while during this same time period many legacy carriers 

experienced declining figures. Also during this time period, LCCs increased their weekly 

departures and cities served by 60 percent. In the third quarter of 2007, Southwest 

Airlines (the largest LCC) alone carried more domestic passengers than any other airline. 

Although LCCs traditionally target leisure passengers, this has even begun to change. 

More and more, LCCs are starting to target business passengers by flying in heavily 

traveled business routes. It is apparent that competition in the airline industry has been 

transformed by LCCs. (Steenland, 2008)     

 In addition to LCCs, the internet has also transformed the airline industry. On-line 

travel agents such as Expedia®, Orbitz®, and Travelocity® make it convenient for 

customers to search the prices of multiple airlines across multiple departure dates. 

Customers can find and purchase the lowest possible fare in a matter of minutes. In fact, 

60 percent of leisure travelers purchase the lowest fare they can find (Harteveldt et al., 

2004; PhoCusWright, 2004). In a May 2008 testimony to the House Committee on 

                                                 

 
 
 
 
 
5 See a book by Cento (2000) for detailed information about the differences between the business models of 
legacy carriers and LCCs. 
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Transportation and Infrastructure (Subcommittee on Aviation) about the impact of the 

Delta and Northwest merger, Former President and CEO of Northwest Airlines, Doug 

Steenland, refers to the internet as a “transparency revolution” and goes on to state that 

online travel agencies “…have provided enormous benefits to consumers and have 

increased the price-competitiveness of the airline industry. In fact, there are few 

businesses in which there is as much pricing transparency.” (Steenland, 2008)     

 The growth of LCCs combined with the increased transparency of airfares has 

led, at least in part, to lower average prices in the airline industry. Between 1995 and 

2004, the prices that passengers paid for tickets declined by more than 20 percent after 

adjusting for inflation6 (Borenstein, 2005). While decreased prices are good for 

consumers, its implications on airlines are quite the opposite. Airline operating costs have 

increased dramatically over the last few years, but airlines have not been able to increase 

fares to match rising costs. In the first quarter of 2009, U.S. network carriers reported a 

total operating loss of $867 million, which was the sixth consecutive quarterly loss 

(Bureau of Transportation Statistics, 2009). Between 2002 and 2008, four major carriers 

filed for bankruptcy protection (Delta Air Lines, Northwest Airlines, United Airlines, and 

US Airways). In addition, ATA Airlines, Skybus Airlines, and Aloha Airlines filed for 

bankruptcy and ended service. Frontier Airlines has also filed for bankruptcy but has not 

                                                 

 
 
 
 
 
6 It should be noted that during this time period, the airline industry faced an economic slowdown in 2000, 
along with the terrorist attacks of September 11, 2001. 
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ended service, and in 2008 Delta and Northwest merged in an effort to become more 

financially stable.  

 

2.3. Price Dispersion Literature 

With the current state of the airline industry, it is not surprising that there has been a great 

deal of interest in studying the effect of airline consolidation on airfares. In the past, 

many researchers have studied how market structure affects the dispersion of airfares, 

often called price dispersion. Price dispersion has been defined in many ways by different 

researchers and is specific to the unit of observation of analysis. However, price 

dispersion can generally be thought of as the difference between an airline’s highest and 

lowest fares in a market. The interest in price dispersion of airfares was sparked when 

Borenstein (1989) used government data sources to show that there is a negative 

relationship between market concentration and price dispersion, meaning that as a route 

becomes more dominated by one airline and moves closer towards monopoly the price 

dispersion decreases . More specifically, he found that as a route moves closer towards a 

monopoly, an air carrier’s low-end fares increase while high-end fares decrease, thus 

decreasing the overall dispersion of prices (while increasing average prices). Over the 

next several years, other researchers also used U.S. government data sources to study this 

relationship empirically, with findings that supported the negative relationship between 

market concentration and price dispersion (Borenstein and Rose, 1994; Hayes and Ross, 

1998; Verlinda and Lane, 2004). A theoretical model also supported this relationship by 

Dana (1999). These researchers also found many other factors that influence the 

dispersion of prices. For instance, it has been shown that price dispersion increases with 
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increased airport dominance (Borenstein and Rose, 1994), airport congestion (Borenstein 

and Rose, 1994), and internet search for airfares (Verlinda and Lane, 2004). These 

researchers also found that price dispersion decreases with increased frequency of flights 

on a route (Borenstein and Rose, 1994), higher levels of tourist traffic (Borenstein and 

Rose, 1994), and competition from Southwest (Hayes and Ross, 1998).   

 The negative relationship between market concentration and price dispersion has 

been contradicted, however, in at least two more recent studies that use the same 

government data sources and analyze the data differently. In past studies, the modeling 

approach was to take millions of available records and aggregate them into one unique 

observation by carrier-route for each quarter. In doing this, these records would be 

aggregated to a few thousand records that were used for analysis. However, Verlinda 

(2005) used one quarter of the government data to demonstrate that the data could be 

analyzed disaggregately without collapsing the data into average carrier-route 

observations. In doing so, a positive relationship between market concentration and price 

dispersion is found. Another study using government data also finds a positive 

relationship between market concentration and price dispersion, although the change in 

relation is attributed not to the aggregated method of analysis, but to omitted-variable 

bias present in other studies, which the authors correct for using an instrumental variables 

approach (Gerardi and Shapiro; 2007). 

 Yet another conflicting finding is that the relationship between market 

concentration and price dispersion is not strictly positive or negative, but is non-

monotonic, inverse U-shaped (Liu and Serfes, 2006). The authors of this study provide a 

theoretical model, as well as an empirical model using government data sources, to 
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demonstrate the non-monotonic relationship. In this model, an increase in market 

concentration when the market is already competitive will result in higher price 

dispersion while an increase in market concentration when the market is already 

concentrated enough will result in lower price dispersion. 

 As seen from this literature, there are many conflicting theories related to airline 

price dispersion, and the method of analysis greatly influences the findings. One reason 

why there are so many conflicting theories of price dispersion is the data that is being 

used. Government data sources for airfares are considered aggregate data in that they 

summarize and/or randomly sample a small portion of all tickets sold. However, with the 

widespread use of the internet for booking tickets, there is an opportunity to collect much 

more detailed and disaggregate data. The use of disaggregate data can be used to resolve 

some of these conflicting theories. To date, there have been three studies of price 

dispersion using disaggregate data. However, two of these studies are for international 

markets that are not comparable to U.S. domestic markets (Bilotkach, 2005; Giaume and 

Guillou, 2004). The other study was analyzed on 12 routes and found a negative 

relationship between market concentration and price dispersion (Stavins, 2001). It is also 

important to point out that ticket observations used in the price dispersion literature differ 

across studies; some studies observe actual ticket purchases, while other studies observe 

offered tickets that may or may not have actually been purchased.  

 Table 2.1 provides a summary of the price dispersion literature and includes 

information about: the relationship between market concentration and price dispersion, 

whether the data used was aggregate or disaggregate, the data source and time period, the 

number of airlines and routes, the total number of observations, and other relevant notes 
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about the data. As seen in the table, there have been few studies that use disaggregate 

data to study price dispersion, and these disaggregate studies are limited in the sense that 

they observe a small number of markets with a limited number of observations. There 

remains a research need to model the relationship between price dispersion and market 

concentration in a broad range of U.S. markets by using disaggregate data.  



 

Table 2.1: Summary of Data Used in Price Dispersion Literature 
Study Market  

Concentration & 
Price Dispersion 

Disagg 
Data? 

Data Source  
and  
Time Period 

Num 
Air-
lines 

Num 
Routes 

Total 
Observ
-ations 

Data Notes  
and/or  
Limitations 

Borenstein (1989)  Negative No DB1A:1987Q3, SSD 9 1,508 --- Airline-route observations 
Borenstein & Rose (1994)  Negative No DB1A:1986Q2, OAG® 11 521 1,020 Airline-route observations 
Hayes & Ross (1998)  Negative No DB1A:1990Q1-1992Q4, T100 15 973 14,652 Airline-route-year-quarter obs. 
Stavins (2001)   Negative Yes OAG® (electronic version): 

9/28/1995
--- 12 5,804 Offered tickets observations 

Giaune & Guillou (2004) Negative Yes Amadeus System  
(a Global CRS) 

17   
 

20  2,592 Ticket observations; 
Nice, France to Europe markets; 
LCCs not included; 
1 Departure Date: 10/16/02;  
4 DFD: 22, 14, 7, 1 day(s)  

Verlinda & Lane (2004)   Negative No DB1B:1998Q1-2002Q2, 
OAG®  

--- 25 --- Average fare by market-year-
quarter-restriction type obs; 
do not observe fares by airline or 
airport, but by city market 

Bilotkach (2005)  
 

N/A - fares aimed 
at business are 
more dispersed 
than leisure 

Yes Travelocity® website: 
3/5/2002- 4/ 23/2002 
 

7 3 499 Offered tickets observations; 
London-New York market; 
2 DFD/2 Day Stay; 
2 DFD/10 Day Stay; 
30 DFD/10 Day Stay 

Verlinda (2005)  Positive No DB1A/B:2000Q1, T100, 
OAG®  

14 1,428 773,811 Ticket observations; 
LCCs and Southwest included; 
Disaggregate analysis approach 

Liu & Serfes (2006) Non-monotonic 
(inverse U) 

No DB1A: Q2 of odd years 1991-
1999, T100  

--- 946 7,104 Airline-route-year-quarter obs. 

Gerardi & Shapiro (2007) Positive 
 

No DB1B:1993Q1-2006Q3, T100 9 2,752 82,855 Airline-route-year-quarter obs.  
LCCs not included 

This study (2009)  Yes Airlines’ websites: 
11/15/2007-12/15/2007 

12 62 108,632 LCCs and Southwest included; 
Codeshares represented 

CRS = Computer Reservation System; DB1A/1B = U.S. DOT’s Origin and Destination Survey Databank 1A/1B, a 10% random sample of all tickets sold in the 
U.S., includes market and pricing data; DFD = days from flight departure; LCC = Low Cost Carrier; OAG® = Official Airline Guide; Q = Quarter; T100 = 
Domestic Segment Data, gives information on capacity and frequency of service, published monthly; SSD = U.S. DOT’s Service Segment Data, data on airline 
flight operations, submittal is required for airlines that operated before deregulation; “---” = information not available in the referenced report. 
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2.4. Methodology 

Given the data limitations of past studies that used disaggregate data to study airfares, the 

goal of this paper is to study how certain characteristics of a market affect airfares by 

using a larger sample of U.S. domestic markets that cover a broad range of market 

structures. To the best of the authors’ knowledge, the dataset used in this study represents 

the largest and most comprehensive disaggregate airline pricing database used to research 

airfares thus far.  

 

2.4.1. Data 

The data was collected in the fall of 2007 in collaboration with QL2® Software, one of 

the major U.S. companies that collects competitive pricing and product information from 

websites. In order to obtain data for Southwest Airlines, additional webbots were written 

by an academic team at Georgia Tech in order to supplement the data provided by QL2®. 

The data collected consists of prices for more than 100 U.S. markets for one month of 

departure dates, which were selected to represent periods of peak and off-peak demands 

(i.e., Thanksgiving and early December 2007, respectively). Round-trip and one-way 

fares were recorded daily for at least 30 days prior to flight departure. Nonstop fares were 

obtained from each airline’s website, while nonstop and connecting fares were obtained 

from at least one major online travel agency (Orbitz®, Travelocity® or Expedia®). For an 

especially detailed explanation of the data collection methodology and compilation, as 

well as a more specific account of the dataset, the reader is referred to (Pope, Garrow, et 

al., 2009). 
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 A subset of the aforementioned dataset was chosen for data analysis in order to 

represent a wide variety of interesting market competition structures and airline 

competition effects, such as monopolies, duopolies, and competitive markets broken 

down into subcategories representing whether the markets have multi-airport effects 

and/or LCC presence. In defining these categories of market structures, only airlines that 

fly nonstop in a market were considered, thus all observations for connecting flights were 

eliminated. This is in following with the methodology of a number of other researchers 

(for example, Borenstein and Rose, 1994; Bilotkach, 2005; Bilotkach et al., 2006; 

Gerardi and Shapiro, 2007; Giaume and Guillou, 2004; Liu and Serfes, 2006; Verlinda, 

2005; Verlinda and Lane, 2004) and is done for two reasons. Firstly, this ensures that the 

analysis is somewhat comparable to those of past studies. Secondly, eliminating 

connecting tickets makes the analysis far less complicated. This is due to the fact that 

connecting tickets represent significantly different qualities of service than direct tickets 

and controlling for the cost differences would be more complex. Additionally, only the 

lowest fares are included in the observations, which is also comparable to the 

methodology of other researchers (Bilotkach and Pejcinovska, 2007; Mentzer, 2000; Pels 

and Rietveld, 2004). Using the lowest observed fare controls for vertical price 

differentiation. Vertical price differentiation is the difference in prices due to the differing 

qualities of tickets (such as restricted vs. non-restricted tickets). By controlling for 

vertical differentiation, the analysis focuses on horizontal price differentiation, which is 

defined as the difference in prices due to the varying tastes of customers (such as brand 

preference, aircraft preference, etc). By focusing on the horizontal price differentiation, 

the analysis can capture the competitive impacts associated with price dispersion. 
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 The final dataset that was used in this study consists of 108,632 observations for 

62 airport-to-airport markets and 12 airlines. Each observation represents the lowest 

nonstop, round-trip fare that was offered by each airline flying nonstop in the market on 

the date that the website was queried and for each specific day of flight departure, 

assuming a one night stay. The major7 airlines (with airline code) included are: American 

Airlines (AA), Alaska Airlines (AS), Continental Airlines (CO), Delta Air Lines (DL), 

Northwest Airlines (NW), United Airlines (UA), and US Airways (US), and the LCCs 

included are: Air Tran Airways (FL), Frontier Airlines (F9), JetBlue Airways (B6), Spirit 

Airlines (NK) and Southwest Airlines (WN). In addition, several codeshares are also 

represented and are denoted by the code of the marketing carrier followed by the code of 

the operating carrier in parenthesis. The codeshares represented include: AA (AS), AS 

(AA), NW (AS), UA (US), and US (UA).  Table 2.2 lists the airports included in the 

dataset, along with the airport codes used throughout this paper. 

  

                                                 

 
 
 
 
 
7 These airlines are network carriers, which are referred to as “major” carriers throughout the rest of the 
paper. 
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Table 2.2: Airport Codes and Names 
Airport 

Code Name of Airport, City and State 

ATL Hartsfield-Jackson International Airport, Atlanta, Georgia 
BOS Logan International Airport, Boston, Massachusetts 
BWI Baltimore-Washington International Thurgood Marshall Airport, Baltimore, Maryland 
COS  City of Colorado Springs Municipal Airport, Colorado Springs, Colorado 
DAL Dallas Love Field Airport, Dallas, Texas 
DCA Ronald Regan Washington National Airport, Washington D.C. 
DEN Denver International Airport, Denver, Colorado 
DFW Dallas/Fort Worth International Airport, Dallas-Fort Worth, Texas 
DSM Des Moines International Airport, Des Moines, Iowa 
DTW Detroit Metropolitan Wayne County Airport, Detroit, Michigan 
EWR Newark Liberty International Airport, Newark, New Jersey 
FLL Fort Lauderdale Hollywood International Airport, Fort Lauderdale, Florida 
FNT Bishop International Airport, Flint, Michigan 
GSO Piedmont Triad International Airport, Greensboro,  North Carolina 
GTF Great Falls International Airport, Great Falls, Montana 
HOU William P. Hobby Airport, Houston, Texas 
IAD Washington Dulles International Airport, Washington D.C. 
IAH George Bush Intercontinental Airport, Houston, Texas 
ICT Wichita Mid-Continent Airport, Wichita, Kansas 
IND  Indianapolis International Airport, Indianapolis, Indiana 
JFK John F. Kennedy International, New York City, New York 
LAS McCarran International Airport, Las Vegas, Nevada 
LAX Los Angeles International Airport, Los Angeles, California 
LGA La Guardia Airport, New York City, New York 
MCO Orlando International Airport, Orlando, Florida 
MDW Chicago Midway International Airport, Chicago, Illinois 
MEM Memphis International Airport, Memphis, Tennessee 
MHT Manchester-Boston Regional Airport, Manchester, New Hampshire 
MIA Miami International Airport, Miami, Florida 
MSP Minneapolis-Saint Paul International Airport, Minneapolis, Minnesota  
OAK Oakland International, Oakland, California 
OMA Eppley Airfield Airport, Omaha, Nebraska 
ORD Chicago O'Hare International Airport, Chicago, Illinois 
PDX Portland International Airport, Portland, Oregon 
PHL Philadelphia International Airport, Philadelphia, Pennsylvania 
PVD Theodore Francis Green State Airport, Providence, Rhode Island 
SFO San Francisco International Airport, San Francisco, California 
STL Lambert-St. Louis International Airport, St. Louis, Missouri 
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2.4.2. Analysis of Data 

When analyzing the data, it was apparent that any level of aggregation only served to 

hide some of the most interesting observations in the dataset. Airline pricing policies in 

the dataset vary greatly by airline, market, peak/off peak time periods, and the number of 

days from departure. Thus, it was inappropriate to analyze the data in a way that would 

aggregate some of these important variables. Because of this, a case study approach was 

taken instead of a regression type approach. 

 An additional challenge that was encountered was determining which measure to 

use for price dispersion. Four measures of price dispersion were investigated. These 

included the standard deviation of fares, the coefficient of variation (standard deviation 

normalized by the mean), the range of fares (the difference between the highest and 

lowest fares), and the interquartile range (the difference between the 75th and 25th 

percentile fares). Each price dispersion measure gave different results about the 

magnitude of price dispersion in the market. Table 2.3 lists the 62 markets (denoted by 

the three letters of the origin airport followed by the three letters of the destination 

airport) used in this analysis, along with the airlines that fly nonstop in each market. 

Table 2.3 also includes the mean, standard deviation (SD), interquartile range (IQR), 

coefficient of variation (CV), and range for each market as reference. 
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Table 2.3: Markets, Airlines, and Summary Statistics 

Market Airlines Mean SD IQR CV Range Roundtrip 
Miles 

ATLEWR CO, DL, FL $299 $117 $128 0.39 $526 1,490 
ATLICT DL, FL $294 $115 $164 0.39 $682 1,554 
ATLJFK DL $332 $138 $147 0.42 $546 1,520 
ATLLGA AA, DL, FL $309 $122 $135 0.39 $576 1,522 
ATLOMA DL $1,046 $308 $100 0.29 $1,240 1,640 

BOSBWI DL, FL $225 $125 $216 0.56 $682 736 

BOSDCA AA, DL, US, UA (US) $417 $186 $273 0.45 $1,093 796 

BOSIAD UA, B6, US (UA) $261 $83 $100 0.32 $1,100 822 
BOSMCO DL, FL, B6 $310 $136 $174 0.44 $830 2,240 
BWIDFW AA $375 $168 $140 0.45 $944 2,420 
BWIPVD WN $126 $32 $15 0.25 $130 652 
DALHOU WN $128 $33 $43 0.26 $136 478 
DCADFW AA, US  $379 $180 $167 0.47 $1,110 2,380 
DENGTF UA $723 $168 $88 0.23 $995 1,246 
DENOAK UA, WN $288 $118 $226 0.41 $597 1,908 
DENSFO UA, F9, US (UA) $377 $121 $172 0.32 $525 1,930 
DFWCOS AA $307 $87 $118 0.28 $426 1,184 
DFWHOU AA $192 $51 $53 0.27 $344 496 
DFWIAH AA,CO $159 $48 $62 0.3 $206 450 
DTWBWI NW, WN $159 $68 $51 0.43 $465 816 
DTWDCA NW, US  $224 $118 $79 0.53 $866 810 
DTWIAD NW, UA $243 $116 $52 0.48 $840 766 
EWRDFW AA, CO $560 $366 $333 0.65 $1,390 2,740 
EWRDTW CO, NW $666 $219 $341 0.33 $860 972 

EWRFLL CO, B6 $223 $99 $130 0.44 $465 2,140 

EWRMCO CO, B6 $235 $101 $160 0.43 $440 1,876 
FNTLAS FL $266 $72 $79 0.27 $350 3,460 
IADDFW UA, AA $430 $204 $224 0.47 $1,076 2,340 
IAHDSM CO $921 $257 $284 0.28 $930 1,606 
INDEWR CO $628 $201 $361 0.32 $681 1,282 
INDJFK DL $440 $203 $270 0.46 $886 1,324 
INDLGA NW, US  $362 $157 $147 0.43 $920 1,314 
JFKDFW AA, DL $538 $357 $339 0.66 $1,497 2,780 
JFKDTW DL, NW $348 $150 $110 0.43 $900 1,014 
JFKFLL DL, B6 $253 $96 $80 0.38 $625 2,140 

JFKMCO DL, B6 $252 $96 $80 0.38 $1,180 1,890 
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Table 2.3: Markets, Airlines, and Summary Statistics (Continued) 

Market Airlines Mean SD IQR CV Range Roundtrip 
Miles 

LASLAX AA, AS (AA), DL, 
NW, UA, US, WN $180 $76 $80 0.42 $636 472 

LAXDEN AA, F9, AS (AA), UA, 
DL, US (UA) $333 $104 $67 0.31 $1,042 1,720 

LGADFW AA $537 $370 $309 0.69 $1,518 2,780 
LGADTW AA, NW, NK $302 $144 $106 0.48 $1,016 1,000 
LGAFLL AA, DL, NK, B6 $290 $177 $150 0.61 $1,329 2,160 

MDWDTW NW, WN $146 $42 $56 0.29 $302 454 
MDWEWR CO $324 $128 $140 0.4 $651 1,416 
MDWMIA FL $253 $114 $120 0.45 $610 2,360 
MEMGSO NW $675 $296 $622 0.44 $1,052 1,136 
MHTBWI WN $144 $37 $50 0.26 $130 752 
MIADCA AA $338 $208 $115 0.62 $1,108 1,842 
MIAIAD AA, UA $411 $248 $378 0.6 $1,268 1,846 

MSPMDW NW, FL $143 $45 $40 0.31 $268 696 
MSPORD AA, NW, UA, US (UA) $166 $105 $50 0.63 $1,409 666 
ORDDTW UA, NW, AA, US (UA) $167 $48 $55 0.29 $292 468 
ORDEWR AA, UA, CO $306 $98 $84 0.32 $557 1,434 
ORDJFK AA, DL, B6 $264 $114 $75 0.43 $810 1,474 
ORDLGA AA, UA $273 $95 $110 0.35 $628 1,462 
ORDMIA AA, UA, US (UA) $362 $198 $210 0.55 $1,041 2,400 

PDXSFO AA (AS), AS, NW(AS), 
UA, US (UA) $276 $89 $92 0.32 $1,056 1,102 

PHLMCO FL, US, UA (US), WN $250 $101 $83 0.4 $788 1,726 
PHLMHT UA (US), WN, US $197 $138 $83 0.7 $961 576 
PHLPVD UA (US), WN, US $210 $154 $99 0.73 $664 472 
STLEWR AA, CO $521 $320 $337 0.61 $1,284 1,738 
STLJFK AA, DL $562 $334 $400 0.59 $1,466 1,778 
STLLGA AA $412 $210 $99 0.51 $1,333 1,770 
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2.5. Case Studies 

In order to investigate the effect of market structure on airfares, the sample of 62 markets 

was grouped according to the specific type of market structure that was observed on the 

route. Table 2.4 lists each of the market types (monopoly, duopoly and competitive), 

along with subcategories for each. The table discusses some of the results that were found 

for each market structure with respect to the general pricing strategies observed in the 

market, the specific carrier pricing strategies that seemed to stand out, and the degree of 

price dispersion observed. The table shows that pricing within a market is greatly 

influenced by many different characteristics of the market, including the presence of a 

LCC, the presence of multi-airport effects, leisure and business mix of passengers, 

temporal effects as the day of departure approaches, advance purchase (AP) restrictions, 

and the influence of demand (as exemplified in differences in pricing strategies between 

peak and non-peak periods). For space considerations, only the most interesting market 

structures and characteristics are chosen for detailed analysis. These sections are 

discussed in detail below. 
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Table 2.4: The Effect of Market Structure on Pricing Strategies and Price Dispersion 

Markets and Structure General Pricing 
Strategies Carrier Strategies Price Dispersion (PD) 

1.  Monopoly Markets (Only One Carrier Flies Nonstop) 

1a. One Major 
Carrier Only (without 
multi-airport effects): 
ATLOMA, DENGTF, 
DFWCOS, IAHDSM, 
MEMGSO 

Generally exhibit the 
highest mean fares of 
all 62 markets. Mean 
fares have drastic 
increase as departure 
approaches for most 
markets. 

PD differs by carrier: 
increases for some 
markets and decreases 
for others as departure 
approaches.  

Has some of the 
highest standard 
deviations and lowest 
CV out of all markets 
(except DFWCOS, a 
leisure market with low 
PD). 

1b. One Major 
Carrier Only (with 
multi-airport effects): 
ATLJFK, BWIDFW, 
INDEWR, INDJFK, 
LGADFW, MDWEWR, 
MIADCA, STLLGA, 
DFWHOU 

Lower mean fares than 
major carrier 
monopolies without 
multi-airport effects. 
Mean fares similar to 
mean fares of 
duopolies with no LCC 
and similar round-trip 
distance. 

AP restrictions 
apparent for most 
markets and carriers. 
AA’s pricing out of 
LGADFW demonstrates 
the clearest AP 
restrictions. 

Mid to high PD out of 
the 62 markets (except 
DFWHOU, which is 
short-haul with low 
PD, and LGADFW, 
which has highest PD 
out of all markets).   
Peak/off-peak trends 
vary greatly. 

1c. One LCC Only: 
FNTLAS, BWIPVD, 
MDWMIA, MHTBWI, 
DALHOU 

Flat prices as departure 
approaches. Mean fares 
tend to be lowest out of 
62 markets, even for 
long-haul markets 
FNTLAS and 
MDWMIA.  

WN pricing curves are 
flat as departure 
approaches. FL pricing 
curves are more 
dynamic.  

PD tends to be the 
lowest out of the 62 
markets and stays 
relatively constant or 
decreases slightly as 
departure approaches. 

2. Duopolies (Two Carriers Fly Nonstop) 

2a. Two Major 
Carriers (No LCC): 
DCADFW, DFWIAH, 
DTWDCA, DTWIAD, 
EWRDFW, EWRDTW, 
IADDFW, INDLGA, 
JFKDFW, JFKDTW, 
MIAIAD, ORDLGA, 
ORDMIA, PDXSFO, 
STLEWR, STLJFK 

Has some of the lowest 
and highest means out 
of the 62 markets. 
Round-trip mileage 
seems to play a role, 
but not always: 
EWRDTW has highest 
mean of this group, but 
has one of the lower 
round-trip mileages. 

AP restrictions 
apparent. AA and CO 
have most clear AP 
restrictions, UA and 
US have flatter pricing. 
DL exhibits dynamic 
pricing, but AP not as 
apparent.   

PD varies significantly 
by market, ranging 
from especially low 
(DFWIAH, PDXSFO, 
ORDLGA) to especially 
high (STLEWR, 
STLJFK, JFKDFW, 
EWRDFW). 

2b. One Major 
Carrier, One LCC: 
ATLICT, BOSBWI, 
BOSIAD, DENOAK, 
DENSFO, DTWBWI, 
EWRFLL, EWRMCO, 
JFKFLL, JFKMCO, 
MDWDTW, MSPMDW, 
PHLMHT, PHLPVD 

Mean fares tend to be 
lower than mean fares 
of duopolies without 
LCC competition. 

AP restrictions 
apparent in almost 
every market, for every 
carrier, including LCCs 
WN, B6, FL and F9. 

Mid to low PD. PD 
trend seems to 
correspond with AP 
restrictions. PD trends 
vary greatly in 
peak/off-peak for 
BOSIAD, JFKMCO, and 
PHLMHT. 

Notes: AP=Advance Purchase; CV=Coefficient of Variation; PD =Price Dispersion 
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Table 2.4: The Effect of Market Structure on Pricing Strategies and Price Dispersion 
(Continued) 

Markets and Structure General Pricing 
Strategies Carrier Strategies Price Dispersion (PD) 

3. Competitive Markets (Two or More Carriers Fly Nonstop) 

3a. Three Major 
Carriers (No LCC): 
BOSDCA, MSPORD, 
ORDDTW, ORDEWR 

Flat pricing as 
departure approaches 
for most markets. Low 
mean fares in MSPORD 
and ORDDTW. Mid to 
high mean fares for 
other markets. 

Pricing strategies are 
similar across airlines 
within each market, 
with the exception of 
US (UA) codeshare in 
MSPORD. 

PD low for most 
markets, except 
MSPORD. The US 
(UA) codeshare in 
MSPORD has an 
especially high PD. 

3b. Two or More 
Major Carriers, One 
LCC: ATLEWR, 
ATLLGA, LAXDEN, 
LASLAX, LGAFLL, 
ORDJFK, LGADTW 

Mid to low mean fares 
out of 62 markets. 

Similar pricing 
strategies across 
airlines within a 
market. DL has 
dynamic pricing in 
LAXDEN. 

Mid PD for most 
markets, except 
LASLAX which is a 
short-haul market with 
low PD.   

3c. One Major 
Carrier, Two LCCs: 
BOSMCO, PHLMCO 

Mid mean fares out of 
the 62 markets.  

Similar pricing 
strategies across 
airlines within each 
market. DL is more 
dynamic. 

Mid PD. PD trends are 
similar for peak/off-
peak periods and are 
rather flat as departure 
approaches.  

Notes: AP=Advance Purchase; CV=Coefficient of Variation; PD =Price Dispersion 
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2.5.1. The Case of Advance Purchase Restrictions 

Evidence of advance purchase price restrictions was found in several markets in the 

sample. Here we compare two markets that both originate at Lambert-St. Louis 

International Airport in St. Louis, Missouri. The market from St. Louis to Newark 

Liberty International Airport in Newark, New Jersey (STLEWR) has a step-like trend as 

the day of departure approaches, indicating that prices change in increments as the day of 

the flight departure nears. Figure 2.1 demonstrates price dispersion for each airline as the 

range of fares (defined as the difference between the maximum and minimum lowest 

daily nonstop airfares observed for each carrier for the set of departure dates) as the day 

of departure approaches8. The peak and off-peak periods have been separated to illustrate 

how demand influences price dispersion. For this market, the off-peak period for both 

AA and CO have a step-like trend, indicating the presence of advance purchase 

restrictions. This implies that the airlines are trying to distinguish between business and 

leisure customers. However, a step-like movement of prices is less obvious for the peak 

period in this market, as the movement of prices is more dynamic.  On the other hand, the 

market from St. Louis to John F. Kennedy International Airport in New York City 

(STLJFK) has advance purchase requirements that are not as obvious in either the peak or 

off-peak periods. 

 

                                                 

 
 
 
 
 
8 In all of the following figures, price dispersion is defined in the same way: as the range of fares (i.e., the 
difference between the maximum and minimum lowest daily nonstop airfares observed for each carrier for 
the set of departure dates) as the day of flight departure approaches. 
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Figure 2.1: Price Dispersion by Market, Airline, Peak/Off-Peak for Two Markets with 
Advance Purchase Trends 
 

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

1 5 10 15 20 25 30

1 5 10 15 20 25 30 1 5 10 15 20 25 30

STLEWR_AA, offpeak STLEWR_AA, peak STLEWR_CO, offpeak

STLEWR_CO, peak STLJFK_AA, offpeak STLJFK_AA, peak

STLJFK_DL, offpeak STLJFK_DL, peak

P
ric

e 
D

is
pe

rs
io

n 
(in

 D
ol

la
rs

)

Days from Departure

  

 31



 32

2.5.2. The Case of Business vs. Leisure Markets 

Differences between pricing in business and leisure markets were observed in the data. 

Chicago to New York markets represent a predominately business route and includes 

ORDEWR, ORDJFK, and ORDLGA. New York to Florida markets represent 

predominately leisure routes and include EWRFLL, EWRMCO, JFKFLL, and JFKMCO. 

The Chicago to New York and New York to Florida markets were chosen for analysis 

due to the similar round-trip distances across the markets, as well as the presence of a 

LCC (JetBlue) in the markets. In comparing the business and leisure routes, the overall 

means of each market are similar, with the business routes exhibiting slightly higher 

average prices (as shown in the “Mean” column of Table 2.3). The overall price 

dispersions of both the business and leisure routes are also quite similar (as shown in the 

SD, IQR, CV, And Range columns of Table 2.3). The main difference between the 

business and leisure routes is the different pricing trends observed during the peak and 

off-peak periods, which is demonstrated in Figures 2.2 and 2.3 (note that both figures 

have the same Y-axis scale for comparison purposes). Figure 2.2 shows that in the 

business markets, the peak pricing is dynamic and is different than the flatter pricing 

observed in the off-peak period. On the other hand, Figure 2.3 shows that in the leisure 

markets, the peak pricing is less dynamic and is similar to the flat pricing observed during 

the off-peak period. An additional observation is that when looking at the carrier-level 

effects, JetBlue seems to demonstrate less dynamic pricing than the major carriers (AA, 

CO, UA, DL). 

 



 

 
Figure 2.2: Price Dispersion by Market, Airline, Peak/Off-Peak for Chicago to New York Markets (Business Markets) 
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Figure 2.3: Price Dispersion by Market, Airline, Peak/Off-Peak for New York to Florida Markets (Leisure Markets)  
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2.5.3. The Case of Codeshare Markets 

In the sample of 62 markets, codeshares were represented for 12 markets. In some of 

these markets, the marketing carrier seemed to mimic the pricing strategies of the 

operating carrier. However, there were two extreme cases where this was not the case. 

When comparing MSPORD and ORDDTW, the markets look similar. Both markets have 

the same nonstop competitors (AA, NW, and UA) and also have the same codesharing 

airline (US sells fares on flights that UA operates). Additionally, they are both hub-to-

hub, short-haul flights with similar round-trip mileage. Further, mean prices in these 

markets are almost identical ($166 and $167, as shown in Table 2.3). However, the level 

of price dispersion for these two markets differs dramatically, where MSPORD has low 

price dispersion and ORDDTW has high price dispersion. Upon further investigation of 

these markets, it is apparent that the codeshare in MSPORD is driving the high price 

dispersion. Figure 2.4 demonstrates the price dispersion of each airline as the day of 

departure approaches. All airlines exhibit flat pricing with low price dispersion, except 

the codeshare in MSPORD, which is significantly higher than the other airlines.  
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Figure 2.4: Price Dispersion by Market and Airline for Two Markets with Codeshares 
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 A similar phenomenon is also found in the PDXSFO market. In this market the 

pricing strategies of AS and its codeshares with both AA and NW (AA and NW sell fares 

on flights that AS operates) all exhibit similar pricing and means. However, UA and its 

codeshare with US (US sells fares on flights that UA operates) exhibit extremely 

different pricing strategies. The mean prices for the US/UA codeshare are four times 

higher than the mean prices for all other flights in the market, including the UA flights. 

One reason for this high price could be due to the underlying revenue management 

system. That is, instead of showing “no availability” for a codeshare partner, the system 

displays a fare that is significantly higher than the fares of the operating carrier, 

effectively shutting off codeshare sales.    
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2.5.4. The Case of Monopoly Markets 

In the sample of 62 markets, three types of monopoly markets existed:  

 1a. One major carrier flies nonstop in the market with no apparent multi-airport effects,  

    1b. One major carrier flies nonstop in the market with observable multi-airport effects, 

    1c. One LCC flies nonstop in the market.  

Each type of monopoly exhibits different price dispersions, average prices, and carrier 

pricing strategies. What is interesting is that out of all of the different market structures, 

the two most extreme cases on both sides of the spectrum are both monopoly cases. More 

specifically, monopolies with one major carrier and no multi-airport effects exhibit the 

highest fares and highest price dispersion out of the entire sample, while monopolies with 

a LCC exhibit the lowest prices and lowest price dispersion out of the entire sample. 

 Figures 2.5, 2.6, and 2.7 demonstrate price dispersion as the day of departure 

approaches for each type of monopoly (holding the scale of the Y-axis the same across 

the three figures for comparison). In these figures, the peak and off-peak periods have 

been separated in order to demonstrate how demand influences price dispersion. In 

monopolies with one major carrier and no multi-airport effects, price dispersion is often 

different for the peak and off-peak periods. For example, price dispersion in the 

ATLOMA market for the off-peak period increases as the day of departure approaches, 

but in the peak period the price dispersion decreases down to zero for the last two days 

before flight departure, so that there is only one price offered. This could be the influence 

of advance purchase restrictions. On the other hand, the price dispersion in the DENGTF 

market for the off-peak period decreases to nearly zero as the day of departure 

approaches, but in the peak period the price dispersion increases as the day of departure 

approaches.  
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 In monopolies with one major carrier and multi-airport effects (type 1a), the mean 

fares are often lower than those of major carrier monopolies without multi-airport effects 

(type 1b), as seen in Table 2.3. The price dispersions of these types of monopolies can 

also be different for the peak and off-peak periods, as exemplified in BWIDFW, 

INDEWR, and especially STLLGA. One interesting observation is the extremely low and 

flat price dispersion of DFWHOU as the day of departure approaches. One thing that 

could influence this is the fact that DFWHOU is a short-haul market with a round-trip 

distance much shorter that the other markets in this category of monopoly; DFW is a hub 

for Southwest, and it is also one of Southwest’s original routes. Another interesting 

market is LGADFW which actually has the highest price dispersion out of all 62 markets 

in the dataset.  In this market, advance purchase requirements are apparent for both peak 

and off-peak periods.  

 Finally, in monopolies with a LCC as the only nonstop competitor (type 1c), both 

price dispersion and the average fares are significantly lower than the major carrier 

monopolies, and are also lower than most of the other markets in the sample of 62 

markets. For the most part, the price dispersion as the day of departure approaches stays 

flat or decreases slightly for both peak and off-peak periods. This type of pricing seems to 

be an anomaly for a monopoly market where higher average prices could be charged. 

BWIPVD, DALHOU, MHTBWI are all short-haul markets flown by Southwest and 

exhibit extremely flat pricing. The flat pricing on these markets could be due to 

Southwest’s business model, or could also be due to the fact that they are all short-haul 

markets. FNTLAS and MDWMIA are long-haul markets flown by Air Tran. In these two 
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markets, the average prices are higher and the price dispersion is more dynamic as the 

day of departure approaches.      

 

 

 
Figure 2.5: Price Dispersion by Market, Airline, Peak/Off-Peak for Major Carrier 
Monopolies without Multi-Airport Effects (Type 1a) 
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Figure 2.6: Price Dispersion by Market, Airline, Peak/Off-Peak for Major Carrier Monopolies with Multi-Airport Effects (Type 1b) 
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Figure 2.7: Price Dispersion by Market, Airline, Peak/Off-Peak for Low Cost Carrier 
Monopolies (Type 1c) 
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2.5.5. The Case of Competitive Markets with Two Low Cost Carriers 

Head-to-head competition by two nonstop LCCs within a market occurs rarely in the U.S. 

and primarily occurs in leisure markets (mainly to Florida destinations). Data was 

collected for BOSMCO and PHLMCO, which are both leisure markets to Orlando. When 

comparing these two markets to all of the other markets in the sample, the overall price 

dispersion tends to be towards the middle of the sample. The price dispersion and means 

of these two markets are similar to those of competitive markets with two or more major 

carriers and one LCC. Figure 2.8 illustrates that as the day of departure approaches, the 

price dispersion tends to be rather flat for both the peak and off-peak periods, especially 

for the LCCs. The pricing trends are more dynamic for the major carriers, DL and US. In 
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these two markets, the peak and off-peak periods exhibit similar pricing trends. This 

observation is similar to the findings of the business vs. leisure case study, which found 

that in the leisure market the peak pricing was less dynamic and was similar to the pricing 

during the off-peak period. 

 

 

 

Figure 2.8: Price Dispersion by Market, Airline, Peak/Off-Peak for Markets with Two Low 
Cost Carriers 
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2.6. Implications for Public Policy 

In this study, observations were made using disaggregate data on a sample of 62 markets 

that cover a broad range of market structures. Some of the most important points that 

were shown include the following:  

• Low price dispersion can be associated with both low and high market 

concentration, depending on the characteristics of the market. This finding 

contrasts with the findings of past research on price dispersion. 

• When a low cost carrier is the only airline competing nonstop on a route, the 

monopoly route functions differently than a monopoly with a major carrier. Even 

in a monopoly situation, low cost carriers (especially Southwest) demonstrate flat 

pricing and price dispersion as the day of departure approaches.  

• As the day of departure approaches, price dispersion can either increase or 

decrease.  

• Peak and off-peak periods often demonstrate different pricing strategies, 

highlighting the importance of jointly examining price and demand. 

• Major carriers tend to exhibit more dynamic pricing strategies than those of low 

cost carriers, suggesting the former are targeting both business and leisure 

customers. 

• Markets with codeshares (specifically codeshares between US and UA) 

sometimes exhibit unusually high price dispersion on the airline that is selling 

tickets for a flight operated by another airline.  

The results of this study could be used to support analysis of mergers and acquisitions, 

allocation of gate slots for new entrants, and other policies that relate to airline 
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competition and the assessment of consumer welfare benefits. For example, this paper 

has shown that there are certain instances when monopoly routes exhibit lower price 

dispersion and lower average prices than competitive routes, as is the case of monopoly 

routes with one nonstop low cost carrier. These differences in monopoly routes highlight 

the importance of understanding price dispersion at the detailed, disaggregate level when 

analyzing the impact of future mergers and acquisitions. 

 Perhaps most importantly from a public policy perspective, this paper shows the 

importance of disaggregate data that describe individual airline behavior. Much public 

policy discussion and analysis relies on average market values that can hide important 

market behavior. With the advent of internet-based ticketing, a powerful tool now exists 

that can be used to understand some of the finer detail of airline markets and competition. 

 

2.7. Future Research 

In future research efforts, there is a need for disaggregate demand data in order to link 

pricing strategies with demand as the day of departure approaches. This could be 

accomplished by pulling seat maps off of the internet while collecting airfares online. 

There is also an obvious need for more research, at the disaggregate level, on how 

codesharing affects pricing within a market. As more and more airlines begin to use 

codeshares, understanding the impacts on the market will become more important. There 

is also a need to link price dispersion to individual revenue management practices of 

airlines, as there appears to be evidence of more price dispersion in airlines with complex 

revenue management systems. Additionally, in future research efforts, it would be helpful 

to compare the offered ticket observations with an actual ticket sample to see which fares 
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were actually purchased. In doing this, market sizes, carrier shares and average fares for 

each carrier could also be obtained from the ticket sample. 
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CHAPTER 3: PRODUCT DEBUNDLING 

 

Garrow, L.A., Hotle, S. and Mumbower, S. (2012) Assessment of product debundling 
trends in the U.S. airline industry: Customer service and public policy 
implications. Transportation Research Part A: Policy and Practice, 46 (2), 255-
268. 

 

3.1. Abstract 

This paper reviews product debundling trends that have occurred in the U.S. airline 

industry. Multiple sources of ancillary fees related to ticketing refunds and exchanges, 

checked baggage, on-board pets, preferred and/or advanced seating assignments, frequent 

flyer ticket redemptions, and day of departure standby policies are reviewed. Despite the 

fact that both low cost and network carriers stress the importance of future ancillary fees 

in their investor reports, our assessment suggests that these fees will be more broadly 

adopted by low cost carriers. We anticipate that many network carriers will eliminate 

ancillary fees, particularly as they begin to recognize how these fees can impact other 

system performance objectives such as minimizing the number of misconnecting 

passengers. We estimate that the debundling phenomenon has diluted revenues to the 

U.S. Airport and Airways Trust Fund by at least five percent. 
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3.2. Introduction  

The airline industry is fiercely competitive. Since deregulation (which in the United 

States occurred in 1978), the airline industry has faced a series of financial challenges 

and has struggled to maintain profitability. For example, according to the Air Transport 

Association, in the first 30 years after passenger deregulation, domestic airline prices fell 

41.2 percent in real terms (2010). Numerous factors have contributed to this decrease, 

most notably the increased market penetration of low cost carriers combined with the 

increased use of the internet as a major distribution channel (which makes it easier for 

customers to find the lowest fares). For example, in 1998, approximately one percent of 

domestic leisure flight tickets were sold through the internet. In 2005, this number was 35 

percent (Brunger and Perelli, 2008). 

 The first decade of the 21st century was especially challenging for major U.S. 

airlines. Faced with increased market penetration of low cost carriers, unprecedented fuel 

costs, continued security threats post 9/11, health outbreaks (SARS, H1N1), economic 

recessions, and the global financial crisis, it is no surprise that in the first decade of the 

21st century, the seven largest U.S. network carriers (Alaska, American, Continental, 

Delta, Northwest, United, and US Airways) collectively lost $35.1 billion (U.S. DOT, 

2010). We define largest using total number of passengers carried in 2006. However, the 

seven largest low cost carriers (AirTran, American West, ATA, Frontier, JetBlue, 

Southwest, and Spirit) earned $4.9 billion; and the seven largest regional carriers 

(American Eagle, Atlantic Southeast, Comair, ExpressJet, Mesa, Pinnacle, and SkyWest) 

earned $5.3 billion during this time period. This decade also saw customer satisfaction 

levels plummet, as passengers faced reduced flight schedules, higher load factors, and 
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long security lines (Carpenter, 2008). From 2001-2005, four out of the seven largest 

network carriers went into bankruptcy (Delta, Northwest, United, and US Airways); and 

from 2005-2011, eight major U.S. carriers went through mergers/acquisitions (America 

West and US Airways in 2005; Delta and Northwest in 2008; Continental and United in 

2010; Southwest and AirTran in 2011). 

 These statistics need to be viewed with some caution, however, as they only paint 

a portion of the full story of the structural market changes that have happened over the 

past decade. That is, although it is true that from 2000-2009, the total domestic available 

seat miles (ASMs) by U.S. passenger carriers dropped by 2.7 percent, it is important to 

recognize that domestic ASMs fell by 7.2 percent whereas international ASMs grew by 

12.1 percent (U.S. DOT, 2010). Further, network carriers – Alaska, American, 

Continental, Delta, Northwest, United, and US Airways – moved much of their capacity 

from domestic to international markets, reducing their domestic capacity by 23.8 percent 

and increasing their international capacity by 7.4 percent. In contrast, low cost carriers – 

AirTran, Frontier, JetBlue, Southwest, and Spirit – increased their domestic capacity by 

103 percent and began to provide international service9 (U.S. DOT, 2010). As of 2009, 

the major network carriers concentrated 62.8 percent of their ASMs in domestic markets 

(compared to 70.4 percent in 2000), whereas the low cost carriers concentrated 96.5 

percent of their ASMs in domestic markets (compared to 99.1 percent in 2000) (U.S. 

                                                 

 
 
 
 
 
9 The other two major low cost carriers noted earlier – ATA Airlines and America West – are not included 
in this comparison as ATA Airlines ceased service in 2008 and America West merged with US Airways.  
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DOT, 2010). Consequently, as of 2009, Southwest became the largest domestic U.S. 

carrier in terms of total passengers (Southwest Airlines, 2009a). 

 The last decade in particular has been one of the most dynamic periods in airline 

history, with 2008 being especially challenging due to major economic events occurring 

outside the airline industry that raised costs and reduced demand. During 2008, oil prices 

soared to more than $130/barrel (CNN, 2010); and the global economic crisis hit, 

dropping the Dow Jones market value by 33.8 percent, the third worst calendar year 

performance on record (2002, the fifteenth worst calendar year performance on record, 

experienced a loss of approximately 18 percent) (Seeking Alpha, 2009). Further, major 

airlines had implemented many cost-cutting and revenue-generating measures during the 

early 2000s as part of their bankruptcy restructuring and merger processes. However, the 

large market penetration of the internet, combined with low cost carrier competition, 

hindered the ability to raise fares to a level that could overcome the “perfect storm” that 

emerged in 2008: soaring fuel costs followed immediately by plummeting demand. 

Consequently, “2009 proved to be the worst year on record for U.S. airlines, in terms of 

year-over-year revenue declines” (Southwest Airlines, 2009b). 

 In times of crisis, though, innovation often occurs. In the authors’ opinion, 2009 

represents one of the fastest and most wide-spread (and bumpiest) implementations of 

new ancillary revenue streams in airline history. That is, new ancillary revenue sources, 

including checked baggage, seat reservation fees, and food for sale were introduced in the 

late 2000s. In addition, many existing ancillary fees, including fees for redeeming 

mileage award tickets, day of departure standby fees, agent-assisted ticketing fees, 
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domestic and international ticketing exchange fees, on-board checked pet fees, and 

unaccompanied minor fees were increased. 

  This paper reviews the debundling trends that are occurring in the U.S. airline 

market and discusses potential policy and customer service implications. 

 

3.3. Methodology 

Several sources of data were used for this analysis. Information pertaining to carriers’ 

products was obtained from airline websites, carriers’ contracts of carriage, and 

reservation agents during the last two weeks of May, 2010. All mainline carriers serving 

destinations predominately in the continental United States with annual operating 

revenues exceeding $1 billion were included in the analysis. Using these criteria, 

Hawaiian Airlines as well as American Eagle and SkyWest were excluded from the 

analysis. An additional low cost carrier, Virgin America, was also included in the 

analysis in order to examine the product differentiation strategies of a relatively new 

carrier operating under the low cost model10.  

 In gathering information, discrepancies were found within the same airline 

website. When these discrepancies were identified, they were resolved by calling airline 

ticketing agents. In several cases, we were able to further clarify the underlying 

motivations driving the debundling trends through interviews with airline managers. 

                                                 

 
 
 
 
 
10 Spirit Airlines is another smaller low cost carrier that was considered for analysis, but was ultimately 
excluded because approximately half of their destinations are in the Caribbean and Latin America. 
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These interviews underscored the importance of examining current and historic 

debundling trends in the context of prevailing market conditions. Thus, when interpreting 

these trends, it was often helpful to include information pertaining to carriers not included 

in the detailed product assessment analysis. 

   Due to the many changes carriers are making to their fee structures, it is possible 

that some of the information obtained from the websites will change rapidly. 

Nonetheless, a comparative analysis based on this information provides important 

insights into how different carriers are approaching ancillary revenues and, consequently, 

enables one to infer likely policy and customer service implications. 

 

3.4. U.S. Airline Market Characteristics  

Before describing how carriers have debundled their products, it is useful to review the 

current structure of the U.S. airline industry, particularly as it relates to airlines’ customer 

segmentation strategies. Table 3.1 illustrates key differences among major and low cost 

carriers. The first six airlines in the table represent major legacy network carriers (sorted 

by size) that serve a wide range of both domestic and international destinations. All of 

these carriers participate in well-established alliances that enable them to further increase 

the number of destinations they can serve. These major carriers also tend to have a 

moderate number of other airline partners that further enhance their networks. Due to the 

fact that these partnerships frequently change, it is difficult to pinpoint a precise estimate 

of the number of non-alliance partners from information provided on the carriers’ 

websites, and thus an approximation is provided.  
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 It is important to note that the four largest network carriers use a round-trip 

pricing strategy whereas the two smallest network carriers use a one-way pricing 

strategy. Round-trip pricing enables carriers to segment the market through offering 

lower prices to (predominately price-sensitive leisure) customers who travel over a 

Saturday and/or spend more than two days at a destination. Travelers who do not meet 

these criteria are more likely to be time-sensitive business travelers who are willing to 

pay more for their airline tickets. One-way pricing occurs when customers receive 

separate price quotes for their departing and returning itineraries. It is interesting to 

observe that the two smallest network carriers, US Airways and Alaska Airlines, despite 

their “legacy” characteristics, use one-way prices. It is also clear that when the United-

Continental merger is complete, US Airways will be in a unique (and possibly difficult) 

position – substantially smaller than the network carriers with a pricing structure that 

mimics low cost carriers (which is better for targeting leisure customers), yet with a 

strong international presence (which is better for targeting business customers). 

 

Table 3.1: U.S. Airline Characteristics 
 # Cities 

Served 
# Countries 
Served 

# Daily 
Flights 

Alliance 
(# Carriers) 

Non-Alliance 
(# Partners) 

Pricing  

Network Carriers        
     Delta 368 66 6206 SkyTeam (10+) 5+ Round-trip  
     American 250 40 3400 Oneworld (10+) 10+ Round-trip  
     United 230 25 3300 Star (25+) 5+ Round-trip  
     Continental  269 55 2700 Star (25+) 5++ Round-trip  
     US Airways 205 31 3134 Star (25+) 5+ One-way  
     Alaska 61 1 297 None 10+ One-way  
Low Cost Carriers        
     Southwest 69 1 3300 None 1a One-way  
     AirTran 71 5 700 None 1b One-way  
     JetBlue 61 11 650 None <5 One-way  
     Frontier 73 3 350 None <5 One-way  
     Virgin America 8 2 94 None <5 One-way  

a Southwest is finalizing an agreement with Volaris to serve Mex arkets in 2010. ican m
b AirTran and Frontier are ending their partnership on 7/16/2010. 
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 The next four carriers in the table (Southwest, AirTran, JetBlue, and Frontier) 

represent large low cost carriers. A smaller low cost carrier, Virgin America, is also 

included to illustrate how some new entry carriers operating under the low cost model are 

attempting to differentiate themselves from Southwest Airlines. The first thing to notice 

is that Southwest Airlines dominates the low cost carrier market, and in fact has a greater 

number of daily flights than US Airways and Alaska Airlines. None of the low cost 

carriers are part of international alliances, and the number of international destinations 

served is small. This is because the equipment types typically operated by the low cost 

carriers can only fly short distances without refueling, which effectively limits the 

international markets that can be served to destinations in Canada, Central America, and 

the Caribbean. Interestingly, the number of destinations served by the four largest low 

cost carriers is approximately the same, which implies the key difference among these 

carriers is flight frequency. The low cost carriers differ in the number of non-alliance 

partners, with the two largest – Southwest and AirTran – leaning towards being 

independent (although partners within Canada and Mexico are seen as highly valuable).  

The different mix of business and leisure customers served by these airlines is also 

clearly observed by comparing their frequent flyer programs. Table 3.2 summarizes the 

different flyer categories among those carriers in Table 3.1 that provide one or more elite 

levels (those carriers not shown have only one flyer category). The number of tiers, 

yearly qualification criteria (expressed as a minimum number of flight segments and/or 

qualification miles), and bonus mileage percentages are shown. Clearly, network carriers 

are targeting business customers and are designing their programs such that the most elite 

members feel particularly valued. On United and Continental, for example, the highest 
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level of memberships is by invitation only, and the specific qualification criteria are not 

public. The top elite level among the low cost carriers is equivalent to the second elite tier 

of the network carriers. 

 In the context of the recent debundling phenomena, the design of elite tiers is 

particularly relevant, as higher elite levels represent customers who travel more 

frequently (and typically generate a large percentage of a carrier’s revenues). Further, 

network carriers that serve a large number of domestic and international destinations are 

better able to attract these frequent travelers. This is often accomplished through 

corporate volume agreements in which a carrier offers a discount to a corporation in 

exchange for the corporation directing a minimum number of trips to the carrier. Due to 

the presence of these high-valued customers and the ability of network carriers to attract a 

larger proportion of these customers, network and low cost carriers have adopted 

different debundling strategies. Specifically, as seen in the next section, many of these 

elite customers are exempted from paying fees.  

 



 

Table 3.2: Frequent Flyer Elite Membership Tiers, Yearly Qualifications, and Bonus Miles Percentages 
 Tier 1 Seg Miles Bonus Tier 2 Seg Miles Bonus Tier 3 Seg Miles Bonus Tier 4 Seg Miles Bonus 
Unitedd Premier 30 25K 25% Premier 

Executive 
60 50K 100% 1K 100 100K 100% Global 

Services 
Not public
 

Continental Silver 30 25K 25% Gold 60 50K 100% Platinum 90 75K 100% Presidential 
Platinum 

Not availablec 

Delta Silver 30 25K 25% Gold 60 50K 100% Platinum 100 75K 100% Diamond 140 125K 125% 

US Airways Silver 30 25K 25% Gold 60 50K 50% Platinum 90 75K 75% Chairman 120 100K 100% 

American Gold 30 25K 25% Platinum 60 50K 100% Executive 
Platinum 

100 100K 100%     

Alaska MVP 30 20K 50% MVP 
Gold 

60 40K 100%         

Frontier Ascent 20 15K 25%a Summit 30 25K 50%         

AirTran A+ 
Rewards 

25b -- n No  e             

a Bonus is also driven by fare class; 150% of miles for Classic Plus fares, 125% of miles for Classic fares and 100% of miles flown for Summit members. 
b Can also qualify by flying 10 segments in 90 days. 
c Program for Presidential Platinum Elites on Continental announced on 1/1/10 and appears to include minimum travel spend criteria in addition to Platinum 
status. No additional benefits for Presidential noted on website. 

d United also has a lower Premier level called “Premier Associate” that can be designated or nominated through marketing, promotions, etc. The benefits of this 
are priority check-in/boarding and access to Economy Plus. 
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3.5. Rapid Debundling 

This section reviews how airlines have created ancillary sources of revenue through 

debundling their products. Before reviewing these ancillary sources of revenue, it is 

helpful to distinguish between new and established fees and look at the definition of 

“new” in the context of a specific carrier, Southwest. 

 Table 3.3 summarizes major sources of ancillary revenues that have been 

collected through fees. The fees are organized into three main categories. The first 

category includes those fees that are the most established (and that customers typically 

expect to pay for). Some of these fees, most notably ticket exchange fees, are well 

established and existed before deregulation. On-board pet fees, unaccompanied minor 

fees, and day of departure standby fees are other examples of fees that are well-

established within the U.S. airline industry. 

 The second category represents fees for services that used to be free to consumers. 

These include fees for making ticket changes through an agent, fees for redeeming 

mileage award tickets, checked baggage fees, seat reservation fees, and food for sale. 

Given these fees were once “free” to customers (in the sense that they were bundled into 

the ticket price), one would expect these fees to generate the majority of customer 

complaints. These are also the fees that would likely have the most difficulty surviving in 

the long-term. 

 The final category represents those fees that were imposed on newly introduced 

services such as live TV, personal movies, and on-board amenity packs. On-board food 

purchases can also be grouped into this category, as they represent the introduction of 

new product offerings distinct from the free meals that were eliminated for the majority 

57 



 

of domestic flights. Given these fees were introduced at the same time as the new 

services, airlines did not set customers’ expectations that these services would be free. 

Thus, we would expect that customer reactions to these fees would not be as negative as 

the reaction to the fees imposed on services that used to be free.  

 

Table 3.3: Overview of Major Fees and Southwest’s Approach to “New” Fees 
Fee Southwest’s Implementation 
Most established  
     Ticket exchange  
     Day of departure standby Established fee: difference between fare purchased 

and fare available on the day of departure 
     On-board pets New fee 
     Unaccompanied minor New fee 
Fees for services that used to be free  
     Agent-assisted ticketing  
     Mileage redemption  
     Baggage  
     Seat reservation New – early check-in/first boarding zone 
     Food-for-sale  
Fees on newly introduced services  
     In-flight entertainment   
     On-board amenity packages  

 

 

 It is interesting to examine these fees in the context of Southwest’s approach to 

establishing “new” sources of ancillary revenues. A clear pattern emerges when looking 

at where and how Southwest has introduced “new” fees – namely, all fees introduced 

have been implemented at the same time as a new service is introduced. In the context of 

on-board pets and unaccompanied minors, these fees were already well-established 

within the industry, which made it more likely Southwest customers would be willing to 

accept these fees when it rolled out these “new” services to its customers.  In the context 

of seat reservation fees, Southwest also introduced a new service –online early check-in– 

and charged passengers to board the aircraft in the first boarding zone. Given Southwest 
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does not have assigned seating, this fee essentially provides customers with the ability to 

secure premium aisle and window seats. 

 The importance of these new revenue streams introduced in 2009 by Southwest 

Airlines is obvious. Southeast posted a net income of $99 million in 2009 (Southwest 

Airlines, 2009b). To put this in context, Southwest’s Early Bird Check-in generated $15 

million in four months and P.A.W.S. (Pets Are Welcome on Southwest) transported 

60,000 pets in the first seven months, generating $5 million (Southwest Airlines, 2009b). 

An Unaccompanied Minor program was also implemented in 2009 (Southwest Airlines, 

2010a). 

 These examples highlight the breadth of “old” and “new” fees that airlines have 

looked to as a potential source of increasing revenues. The examination of Southwest’s 

introduction on new fees also sheds light on the strategy it has used to introduce fees 

without distancing its customers – explicitly tying the introduction of a fee to a new 

service offering. The remainder of this section examines three of the key sources of 

ancillary revenue in depth: ticket exchange fees, baggage fees, and seat reservation fees. 

 

3.5.1. Ticket Exchange Fees 

Since 2008, there has been a rapid debundling of products and services that used to be 

included in the base fare (defined as the portion of the fare that ties directly to airlines’ 

operating revenues, i.e., the base fare excludes taxes and fees imposed by the 

government). One of the most well-recognized and established fees involves ticket 

exchanges. Table 3.4 summarizes current domestic exchange fees. In some cases, 

exchange fees depend on whether the customer requests the exchange online or uses a 
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call center, airport agent, or city ticket office. For example, in the case of Alaska Airlines 

and Virgin America, the domestic exchange fee is $75 if the exchange is made online, 

$100 otherwise. The $25 additional surcharge is higher than the $15 “standard” fee for 

booking a ticket through a call center, which may be due to the added complexity and 

time that is typically associated with processing an exchange.  

Table 3.4 also highlights a trend that will be seen across most implementations of 

ancillary fees: the predominant use of waivers for elite members and/or those customers 

purchasing higher fares. We will return to this point in our discussion of a U.S. 

Department of Transportation (DOT) Proposed Ruling that seeks to have carriers 

customize websites to perform “all inclusive” searches, as fee exemptions linked to fares 

and/or status may create substantial implementation difficulties. 

 

Table 3.4: Ticketing/Agent Assisted Fees and Exchange Fees 
 Ticketing/Agent 

Assisted Fees 
Waivers for Ticketing/Agent 
Assisted Fees 

Domestic  
Exchange Fee 

Network Carriers    
     Delta $20 ($35) Diamond, Platinum, Gold $150 
     American $20 ($30) Executive Platinum $150 
     United $25 ($30) 1K, Global Services $150 
     Continental $25 Platinum $150 
     US Airways $25 ($35) Preferred $150 
     Alaska $15 ($25) None $75/$100b 

Low Cost Carriers    
     Southwest N/A N/A N/A 
     AirTran $15 Elites $75a 
     JetBlue $15 None $100 
     Frontier $25 Elites 

Classic/Classic Plus fares 
$50 Classic fares 
$100 Economy fares 

     Virgin Am. $15 None $75/$100c 
KEY: Call center fee (airport agent/city ticket office fee). 
aOnly business fares are refundable. Elites purchasing Y, B, M fares receive free exchanges/refunds. 
bSome web tickets may not be exchanged. If fee applies, charge is $75 online, $100 otherwise. 
cIf fee applies (based on ticketing class) fee is $75 online, $100 otherwise. 
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Although carriers were not required to report exchange and cancellation fees until 

the late 2000s, three major network carriers (Alaska, United, and Northwest) and two low 

cost carriers (Frontier and JetBlue) have reported these revenues annually from 2000-

2009. The trends in exchange and cancellation fees for these network and low cost 

carriers are shown in Figure 3.1.  In general, ticketing fees expressed as a percent of total 

operating revenue have increased during the last decade across (non-Southwest) LCC 

carriers and network carriers (U.S. DOT, 2010). 
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Figure 3.1: Exchange and Cancellation Revenues as Percentage of Total Operating Revenue 

 

 

Historically, Southwest Airlines has not charged customers fees to exchange their 

tickets; i.e., customers who desire to make a change pay only the applicable difference in 

fares. To illustrate what this fare difference means, consider the one-way pricing curve 
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for Southwest shown in Figure 3.2 (the fares shown represent the lowest one-way fares 

Southwest offered for flights departing on Monday, November 19, 2007, from Las Vegas 

to Los Angeles). For ease of interpretation, assume this price curve applies to all flights 

and departure dates Southwest offers from Las Vegas to Los Angeles. Next, assume a 

customer purchases a departing flight 21 days in advance of flight departure (for $54), 

but the day the flight departs becomes ill and cannot travel. The customer rebooks the 

outbound flight for the next day, but is now purchasing a ticket one day in advance of 

departure when the prevailing fare is $104. The customer does not pay a “fee” to 

exchange the ticket for the different departure date but must pay the difference between 

the 21-day advance purchase fare and the one-day advance purchase fare ($104-$54 = 

$50). Thus, although Southwest does not charge a fee for the ability to change a ticket (as 

many U.S. carriers do for their low-yield coach tickets), Southwest is likely to gain 

additional revenues when passengers need to change their tickets near the flight 

departure. However, U.S. carriers do not explicitly report the additional revenue 

generated due to these “fare differences” to the U.S. DOT, making it impossible to 

compare how this source of ticketing revenue differs across carriers. 

The discussion of ticketing exchange and cancellation fees is an example of how 

U.S. carriers have looked to increase ancillary revenues through increasing established 

fees. Further, given Southwest has historically not charged fees for customers to 

exchange tickets, we would not expect Southwest to introduce these fees in the near-term 

future. 
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Figure 3.2: Southwest’s One-Way Pricing from Las Vegas to Los Angeles 

 

 

3.5.2. Baggage Fees 

Whereas ticketing exchange and refund fees represent a more established source of 

ancillary revenues, in the past 24 to 36 months many new ancillary fees were also 

implemented. One of the largest sources of revenue was derived from the implementation 

of checked-baggage fees. 

 Although the majority of U.S. airlines implemented fees for the first checked bag 

in 2008, two major low cost airlines – Southwest and JetBlue – elected not to charge fees. 

Specifically, as of June, 2010, Southwest did not charge for the first two checked bags of 

standard size and weight, and JetBlue did not charge for the first checked bag of standard 

size and weight. 
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 Expressed as a percentage of operating income, baggage fees for overweight, 

oversized, and/or extra bags remained relatively constant on Southwest, modestly 

increasing from 0.21 percent to 0.26 percent from 2007 to 2009. However, among all 

U.S. passenger airlines, baggage fees more than quadrupled, from 0.55 percent to 2.4 

percent of operating income, over this same time period. The reliance on baggage fees as 

a source of revenue is particularly striking among the low cost carriers (excluding 

Southwest and JetBlue). For example, in 2009, baggage fees represented an equivalent of 

between 5.0 percent - 6.7 percent of the operating revenues for AirTran, Frontier, Spirit, 

and Sun Country. In contrast, among the major U.S. airlines (Alaska, American, 

Continental, Delta, Northwest, and United), baggage fees grew from a baseline of 0.3-0.6 

percent of operating revenue in 2007 to 1.6-2.4 percent in 2009. JetBlue, which 

implemented a one-free bag checked policy, falls more in line with the growth seen 

among the major carriers, showing a growth from 0.5 percent of operating revenue in 

2007 to 2.0 percent in 2009. US Airways also experienced faster-than-usual growth 

compared to the major airlines, growing from 0.3 percent of operating revenue in 2007 to 

4.0 percent in 2009 (U.S. DOT, 2010). 

 Although it is relatively easy to quantify revenue gained by those carriers who 

introduced baggage fees, it is not easy to quantify revenue and market share shifts due to 

the customers’ decision to travel on Southwest and/or JetBlue, which did not implement 

fees for the first checked bag. Southwest Airlines noted that in 2009, that “we launched 

an aggressive television advertising campaign to affirm that Bags Fly Free only on 

Southwest [and] experienced a domestic market share shift worth close to a billion 

dollars” (Southwest, 2009c). It is difficult – if not impossible – to verify Southwest’s 
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analysis from independent data sources. However, if we believe Southwest Airlines’ 

analysis, then debundling baggage fees from the price of the ticket may have created 

value for the industry as a whole. That is, unlike many other product implementations, 

such as “wifi” service where one carrier may see a short-lived first-mover market share 

advantage before all other carriers match service, the way in which carriers implemented 

baggage fees reflect a unique market segmentation. Whereas Southwest Airlines reported 

that it may have shifted an equivalent of $1 billion in passenger revenues from the other 

carriers in 2009, other U.S. carriers collectively generated $2 billion in incremental 

baggage revenues (U.S. DOT, 2010); i.e., a net benefit of approximately $1 billion 

appears to have been generated through baggage fees for the U.S. airline industry as a 

whole. Even if Southwest’s analysis is overstated, what is clear is that it has not been 

willing to charge customers fees for services that at one time were offered for free or 

bundled in the ticket price. In the case of baggage fees, Southwest would likely be able to 

generate additional short-term revenues in excess of $1 billion a year by matching other 

carriers’ baggage fee policies. However, it does not appear willing to implement a 

baggage fee due to longer-term revenue impacts associated with losing repeat customers 

to other airlines and/or of losing its unique brand identity. 

 There is another point that is particularly interesting in the context of baggage 

fees, namely how quickly these fees were rolled out – and how quickly they were 

increased and matched by competitors as airlines began to recognize their potential for 

revenue generation. Table 3.5 shows one-way checked baggage and pet fees for several 

major U.S. carriers as of June 1, 2010, and Table 3.6 shows changes that occurred from 

2008 to 2009 across these carriers. A quick scan of Table 3.5 shows that major network 
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carriers (Delta, American, United, Continental, US Airways) have aligned their first and 

second checked baggage fees; whereas there is variability among the low cost carriers (in 

terms of how they position themselves in the market; that is most likely to compete 

against the generous baggage policies of JetBlue and Southwest). What is most 

interesting in Table 3.6 (and can be seen throughout other implementations of ancillary 

fees) is that due to the speed in which these fees were rolled out to the market, it appears 

that technology and/or human resource constraints were encountered and limited pre-

market testing was conducted. For example, in the case of checked baggage fees, it 

appears that Continental initially charged for checked-bags when customers checked in 

online, but not at the airport; note the $0 fare for airport check-in in Table 3.6 

(Continental, 2010b).  

 

Table 3.5: One-Way Checked Baggage and Pet Fees as of June 1, 2010 
Checked bag 1st 2nd 3rd 4th-5th 6th-10th On-board Pet Checked Pet 
Network Carriers         
     Delta $25 ($23) $35 ($32) $125 $200 $200 $125 $200 
     American $25 $35 $100 $100 $200 $100 $150 
     United $25 ($23) $35 ($32) $100 $100 $200 $150 $250 
     Continental $25 ($23) $35 ($32) $100 $100 $100 $125 $149+ 
     US Airways $25 ($23) $35 ($32) $100 $100 $100 $100 N/A 
     Alaska $15 $25 $50 $100 $100 $100 $100 
Low Cost Carriers        
     Southwesta None None $50 $50 $50 $75 N/A 
     AirTran $15 $25 $50 $50 $50 $69 N/A 
     JetBlue None $30 $75 $75 $75 $100 N/A 
     Frontier $20 $30 $50 $50 $50 $75 $150 
     Virgin America $25 $15 $25 $25 $25 $100 N/A 

KEY: Airport check-in fee (online check-in fee/discount, if applicable). 
a Baggage fees of $110 apply for 11th+ bag. 
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Table 3.6: Representative Changes to Checked Baggage Fees  
 Time Period 1st bag  2nd

 bag 
Delta Ticketed after 1/5/10 for travel on/after 1/12/10 $25 ($23) $35 ($32) 
 Ticketed 7/15/10-1/4/10 $20 ($15) $30 ($25) 
 Travel after 12/5/08 (to ticketing 7/14/10) $15 $25 
 Ticketing prior to 11/5/08 for travel on/after 12/5/08 $0 $50 
American Ticketed after 2/1/10 $25 $35 
 Ticketed 8/14/09-1/31/10 $20 $30 
 Ticketed before 8/14/09 $15 $25 
Continental Ticketed after 1/9/10 $25 ($23) $35 ($32) 
 Ticketed 10/2/09 – 1/8/10 $10 ($18) $25 ($23) 
 Ticketed 7/21/09 – 10/1/09 $0   ($15) $0   ($25) 
US Airways Ticketed after 1/18/10 $25 ($23) $35 ($32) 
 Ticketed 8/26/09 – 1/17/10 $25 ($20) $35 ($30) 
 Ticketed before 8/26/09 $20 ($15) $30 ($25) 
Virgin America Ticketed after 2/12/10 for travel on/after 3/1/10 $25 $25 
 Ticketed 8/21/09-2/11/10 $20 $20 
 Ticketed prior to 8/20/09 $15 $15 

KEY: Airport check-in fee (online check-in fee/discount, if applicable). 
 

3.5.3. Seat Fees 

Although the implementation of baggage fees and associated alignment of fees across 

carriers was relatively simple, the same is not true for seat reservation fees. Table 3.7 

summarizes U.S. carriers’ seat fees and characteristics associated with seats that are sold 

to a broad customer base and/or set aside for premium customers. All low cost carriers 

and the majority of network carriers have some form of seat pricing, although it is 

interesting to examine how airlines distinguish among coach seats and create a “unique” 

product for which they can charge additional fees. Historically, seats with extra leg room 

were used to create a unique coach product that was offered to customers for a premium 

price. However, as of June 2010, only one network carrier (United) offered extra legroom 

in coach, and only three low cost carriers (JetBlue, Frontier, and Virgin America) 

differentiated coach products using available leg room. However, all low cost carriers 

charged seat fees (or a variant of seat fees, in the case of Southwest) as did three of the 

six major network carriers. In many cases, product differentiation is accomplished 
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through defining preferred seating areas. These areas typically include exit rows, 

bulkhead rows, and aisle and window seats near the front of the aircraft. These preferred 

seating areas often have early boarding privileges. Ironically, by imposing checked-

baggage fees, airlines were able to create a more valuable coach product linked to 

boarding zones, i.e., those customers who board the aircraft earlier have better access to 

overhead space for securing their carry-on luggage. 

 

 
Table 3.7: Overview of Seat Reservation Fees and Access to Preferred Seating 

 Seat 
 pricing 

Extra 
legroom 

Seats for  
sale 

Preferred  
seats 

Preferred seat  
Accessc 

Network Carriers 
  Delta Noa No No Yes Elites 
  American No No No Yes Elites 

Y,B, Fares 
  United Yes ($9-$49) Yes Yes Yes Elites 

All others at check-in ($) 
  Continental Yes (varies) No Yes Yes Elites 

All at check-in ($) 
  US Airways Yes ($5-$15) No Yes  Yes General frequent flyers 

All at check-in ($) 
  Alaska No No No Yes Elites  
Low Cost Carriers 
  Southwest $10 early check-inb No Yesb N/A N/A 
  AirTran Yes (6-$20) 

 
No Yes Yes All ($) 

 
  JetBlue Yes ($9-$75) Yes Yes Yes All ($) 
  Frontier Yes ($15-$25) Yes Yes Yes Elites 

Higher yield coach fares ($) 
All others at check-in ($) 

  Virgin Am Yes ($35-$110) Yes Yes Yes All ($) 
a Delta implemented seat pricing in 10/08 as part of the Northwest-Delta merger, but discontinued the 
practice shortly thereafter. 

b Southwest charges $10 for early check-in (up to 36 hours in advance of flight) which has a high 
probability of boarding with first group. 

c ($) indicates that a seat reservation/seat selection fee applies; if missing then exemption applies for that 
group/fare. 

 
 

  

68 
 



 

 Unlike baggage fees, there is more variability across carriers’ implementation of 

seat fees. Although all network and low cost carriers have preferred seating areas, they 

differ in which customers they make these seats available to, and which customers they 

charge to access these seats. For network carriers serving a large loyal elite customer 

base, such as Delta and American, it may not be advantageous to charge for these 

preferred seats. In addition, unlike low cost carriers that typically have one or two fleet 

types, network carriers typically have many fleet types. As a result, many network 

carriers have developed demand-driven dispatch policies to swap aircraft close to 

departure in order to better match unexpected fluctuations in demand. Implementation of 

seat pricing policies in which the number of seats for sale differs across aircraft may 

reduce network carriers’ flexibility in reassigning customers to different seats as part of 

demand-driven dispatch policies. 

 Seat fees, reflected in the “seats for sale” column of Table 3.7, are often 

dependent on the purchased fare and/or the customer’s status in the carrier’s frequent 

flyer program. For some airlines, the seats for sale do not represent physical differences 

from other seats in coach (namely extra leg room) but rather are tied to boarding 

privileges or the ability to reserve a seat prior to check-in. For example, AirTran charges 

a $6 seat reservation fee for any “non-preferred” seat that customers purchase in a 

discount fare class; “preferred” exit and seats in the front of coach are sold for $13-$20, 

and no differentiation is made for fare class or membership status. Three of the remaining 

low cost carriers in the table – Southwest, JetBlue, and Virgin America – charge for 

preferred seating (or the equivalent preferred boarding in the case of Southwest); only 

Southwest differentiates based on membership status (elite members receive preferred 
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boarding privileges). The remaining carrier in the table, Frontier, has a distinct preferred 

seating plan compared to the other low cost carriers. Unlike AirTran, it does not allow 

advance seat reservations for a fee at the time of booking on economy fares; that is, these 

customers have no option but to wait until check-in for their seat assignments. Similar to 

JetBlue and Virgin America, Frontier does sell preferred seats, but it differentiates by 

fare, status, and time of booking: elites receive these seats free of charge, customers 

purchasing higher-yield coach fares may purchase these seats at the time of booking, and 

all other customers may purchase these seats at check-in. Among the network carriers, 

more variability in seat fees can be observed. Delta, American, and Alaska Airlines do 

not charge seat fees but do provide preferred seating access to elite members and/or 

premium coach fare customers at no charge. In contrast, United, Continental, and US 

Airways charge seat fees and differentiate these fees by fare class, customer status, and/or 

time until departure. 

 

3.6. Discussion of Policy and Customer Service Implications 

New ancillary fees may result in a decrease in customer satisfaction. Although no surveys 

are available that measure customer responses to these new fees, it would not be 

surprising to find that customer satisfaction levels have dropped since these new fees 

were introduced – particularly those fees related to baggage fees and seat reservation fees 

that represent add-on charges to customers that used to be “free” or bundled in the base 

fare. The fact that the U.S. DOT has issued a Proposed Ruling discussing these fees is a 

clear indication that their long-term adoption may be influenced by customer backlash 
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and possible regulatory intervention. This section reviews three main policy and customer 

service implications associated with the debundling phenomena.  

 

3.6.1. Enhancing Customer Protections 

The comparison of baggage and seat reservation fees in Section 4 illustrates the 

complexity of pricing that is emerging in the market, and underscores the fact that the 

choices facing air travelers today are much different than the choices they faced 30 years 

ago after deregulation. Looking ahead, the U.S. federal government may also play a large 

role in shaping the future of the airline industry, particularly as it relates to the 

distribution and presentation of “choices” to consumers. Specifically, on June 8, 2010, 

the U.S. DOT issued a Notice of Proposed Rulemaking on enhancing airline passenger 

protections; one of these proposed rules would require carriers to notify consumers of 

optional fees related to air transportation and of increased baggage fees (Federal Register, 

2010). Specifically, the U.S. DOT states: 

We also seek comment on the costs and benefits of requiring that two prices be 

provided in certain airfare advertising – the full fare, including all mandatory 

charges, as well as that full fare plus the cost of baggage charges that 

traditionally have been included in the price of the ticket, if these prices differ. 

… Should the Department require carriers to include in the second price all 

services that traditionally have been included in the price of the ticket such as 

obtaining seat assignments in advance? … In the alternative, the Department is 

considering requiring sellers of air transportation to display on their Web sites 

information regarding a full price including optional fees selected by the 
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passenger when a prospective passenger conducts a query for a particular 

itinerary. In other words, passengers would be able to conduct queries for their 

specific needs (e.g., airfare and two checked bags, airfare, one checked bag and 

extra leg room). … Proposed section 399.85(c) would require carriers that have 

a Web site accessible to the general public to disclose all fees for optional 

service to consumers through a prominent link on their homepage that leads 

directly to a listing of those fees. Optional services include but are not limited to 

the cost of a carry-on bag, checking baggage, advance seat assignments, in-

flight food and beverage service, in-flight entertainment, blankets, pillows, or 

other comfort items, and fees for seat upgrades.  

 What is most interesting about the Proposed Ruling is the focus on regulating 

how information is displayed to consumers, and even how consumers should be able to 

interact with the website. Given that ancillary fees paid by a consumer are often tied to 

different fares and/or frequent flyer status, providing a customized search option will be 

challenging for airlines to implement as suggested in the Proposed Ruling. One 

implementation model that may be viable is that used by United in the context of its 

preferred Economy Plus seating. The ability to reserve an Economy Plus seat on United 

can only be done online if customers first log in to the website using their frequent flyer 

account. Through logging on, United is basically able to tailor seat selections to each 

customer. However, United also indirectly benefits from encouraging customers to log in 

at the beginning of the search process (versus when a ticket is ultimately purchased) in 

the sense that it can unobtrusively observe the sequence of screens across a single or 

multiple website session. As shown by many authors (e.g., see Hoffman and Novak, 
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1996; Moe and Fader, 2004; Montgomery et al., 2004; Lee et al., 2010), this can provide 

valuable marketing information. Thus, the Proposed Ruling and expressed desire by the 

DOT to dictate how customers can search for information needs to be viewed in a 

broader context, one that examines the potential benefits and disadvantages associated 

with: (1) customizing information to each individual; while, (2) providing new 

opportunities for carriers to customize marketing information. The ability to track 

individuals during their online search process may also raise new privacy concerns that 

need to be addressed.  

 From a research perspective, the impact of menu display and search options on 

customer choice is not a well understood area. It is an area that major carriers are just 

now beginning to investigate – particularly the trade-off between making low fares 

“transparent” for price-sensitive customers to stimulate demand without cannibalizing 

revenues for time-sensitive customers11. For example, Delta was recently testing the 

placement of its low fare search option, a “my dates are flexible” option on its home 

webpage. In one design, the “my dates are flexible” option appears prominently on its 

webpage; while in a second design, this option was still on the homepage, but was hidden 

in the sense it could be accessed only by first clicking the “more booking options” tab.  In 

late 2009, Continental Airlines completely revamped its website, making low cost fare 

comparisons from the home page and default returns less obvious. Continental has 

                                                 

 
 
 
 
 
11 See Brunger (2010) for a discussion that challenges one of the commonly-held beliefs in the industry 
related to internet transparency and revenues. Brunger offers that increase fare transparency has not 
decreased revenue.   
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recently implemented an advanced low fare search option, which is unique from other 

search engines in that it is customized to Continental’s round-trip pricing philosophy 

(which imposes minimum stay requirements on fares for certain days of the week); but 

this feature is not prominently displayed on its home page and can only be accessed by 

performing an “advanced search option” query and clicking on the “my dates are 

flexible” option. This example further highlights the dynamic nature of the U.S. airline 

market, and the many open research questions that remain to be investigated in this area. 

It also brings to light another issue: the need to understand how seemingly isolated 

changes (such as website displays) may cause unintended consequences for other 

decision support systems (in this case, revenue management and demand predictions). 

 

3.6.2. Airport and Airway Trust Fund 

The debundling trend also has potential implications for government revenue sources, 

most notably the Airport and Airway Trust Fund (AATF). The tax structure associated 

with the AATF has undergone several major changes since deregulation. Karlsson (2006) 

provides a historical review of these changes. Today, the current aviation excise tax 

structure is based on the Taxpayer Relief Act of 1997, Public Law 105-35. The three 

largest components of the AATF are a domestic passenger ticket tax (7.5 percent of the 

ticket price), a domestic flight segment tax (set at $3.70 for 2010), and an international 

arrival and departure tax (set at $16.10 for 2010). According to a Federal Aviation 

Administration (FAA) presentation, in FY 2004, 51.5 percent of the excise taxes were 

levied through the passenger tax, 18.2 percent from the passenger segment tax, and 16.1 

percent from the international passenger tax. The remaining excise taxes were collected 
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from other passenger and fuel taxes (Federal Aviation Administration, 2005; Federal 

Aviation Administration, 2010a). These percentages have remained relatively constant 

across the years, i.e., the total receipts for the AATF from these three excise taxes has 

ranged from 72 percent in 1999 to 69 percent in 2006 (Federal Aviation Administration, 

2010b). It is interesting to note that these funds have remained relatively constant despite 

the underlying structural changes in the U.S. airline market. Part of the reason is likely 

due to the mix of fees from domestic and international passengers, which helped the 

AATF protect itself against the shift towards international markets seen by network 

carriers.  

 However, as carriers shift towards a combination of a base fare (that is subject to 

the 7.5 percent domestic passenger ticket tax) and add-on services (that are not subject to 

this tax), it is logical that the AATF will lose revenues. For example, in 2009, U.S. 

domestic carriers collected $2.37 billion in reservation change fees (U.S. DOT, 2010). 

Assuming these fees could have been collected through the base fare, this represents a 

potential loss of $177 million for the AATF. In 2009, U.S. domestic carriers collected 

$2.72 billion in baggage fees, which represents an additional potential loss of $204 

million for the AATF. Finally, in the last quarter of 2009, airlines collected $736 million 

in baggage fees, $564 million in reservation change fees, and $611 million from other 

ancillary fees “such as pet transportation fees and frequent flier award program fees” 

(Bureau of Transportation Statistics, 2010). Thus, in terms of “other” ancillary fees we 

estimate an additional potential loss of $183 million for the AATF. Given the total 

estimated tax receipts for the AATF were $11.282 billion (Federal Aviation 

Administration, 2009), the potential losses from ancillary revenue streams (~5.0 percent) 
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are noteworthy, particularly if the trend towards debundling continues in the U.S. 

domestic air market. However, unlike the European Union, in which the percentage of 

ancillary fees on low cost carriers can exceed 20 percent of the total revenues generated 

(May 2010), the U.S. is in an unique position in that it has one dominant low cost carrier, 

Southwest Airlines, that fundamentally does not believe in charging fees. This unique 

market structure will likely buffer the AATF against dramatic revenue leakage due to 

ancillary revenue generation. 

 

3.6.3. Integration across Airline Systems 

Several examples have been provided to illustrate how implementation of ancillary fees 

(which seeks to generate additional revenue for a carrier) may actually lead to revenue 

loss or unintended consequences in performance metrics in other parts of the airline 

business. These examples include the recent elimination of close-in-ticketing fees by 

Delta and United (which one may assume is due to long-term lost revenue by customers) 

and elimination of seat fees by Delta (which from its online blog discussion, one can infer 

was due to complaints from its premier customers). The discussion of customizing 

carriers’ websites to help customers find lower fares also falls under this category, as it 

likely improves the number of tickets sold but decreases yield and possibly total 

operating revenue. 

 Indeed, the implementation of ancillary fees can have many subtle unintended 

consequences that are difficult for carriers to quantify. As an example, consider day of 

departure standby fees. Many carriers charge fees to standby for other flights on the day 

of departure. These fees are typically categorized into confirmed standby fees and 
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unconfirmed standby fees. Confirmed standby fees apply when a gate agent can 

automatically rebook a passenger and confirm a seat on an alternate flight. With one 

exception, confirmed standby fees range from $25-$75 for the carriers shown in Table 

3.1. Southwest Airlines is the only exception in that it does not charge standby fees per 

se, just the difference between the purchased fare and the current fare. Confirmed standby 

fees are marketed to consumers in lieu of the much higher exchange fees. As seen with 

the baggage and ticketing exchange fees, many exemptions apply based on the purchased 

fare class and/or elite membership status. 

 In contrast to confirmed standby fees, unconfirmed standby fees apply if the gate 

agent cannot confirm a seat on a desired flight and/or if the airline permits passengers to 

standby even though a seat can be confirmed. Only a few carriers permit unconfirmed 

standby for flights at no fee (e.g., US Airways, AirTran, JetBlue, and Virgin America). 

Further, in the case of JetBlue and Virgin America, their free unconfirmed standby 

policies are restricted to a subset of flights, i.e., customers must pay a confirmed standby 

fee if they board flights that depart outside the designated free standby time window. 

 Similar to the previous discussion of baggage fees, there have been many changes 

implemented in these fees during the past 12-24 months. Some carriers have made their 

policies stricter, e.g., American recently changed its unconfirmed standby policy (such 

that it is not permitted except for tickets purchased with miles). In contrast, other carriers 

have relaxed their policies, e.g., as of April 2010, United now permits confirmed 

standbys on all flights on the day of departure; previously this was restricted to those 

flights departing within three hours of the original ticketed flight. Similarly, AirTran 

recently decreased its standby fees from $49 to $25, and Continental recently decreased 
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its standby fee from $75 per reservation to a per-person charge of $50 with discounts 

and/or waivers for elite members. 

 It is interesting to think about the impact of these standby fees, which restricts the 

movement of passengers across flights from an operational perspective. Discouraging 

passengers from standing by for earlier flights may lead to misconnections (if the flights 

the passengers are on are delayed) or lost opportunities to accommodate other disrupted 

passengers. That is, the ability to leave earlier than planned essentially provides an extra 

buffer of time for connecting passengers and helps shift demand to earlier flights, 

providing more seats later in the day for disrupted passengers. Further, these buffers may 

actually be quite worthwhile from financial and customer service perspectives. For 

example, a study by Bratu and Barnhart (2002), based on a major U.S. carrier’s data from 

2000 shows that approximately 30 percent of its flight legs were delayed and 3.5 percent 

cancelled, resulting in approximately 4 percent of all passengers being disrupted (2 

percent were connecting passengers). From the carrier’s perspective, Clarke and Smith 

(1999) estimate that “the financial impact of irregularities on the daily operations of a 

single major U.S. domestic carrier may exceed $440 million per annum in lost revenue, 

crew overtime pay, and passenger hospitality costs” (Lan, Clarke and Barnhart, 2006). 

This example highlights the difficulties connected to quantifying all short-term and long-

term financial costs associated with implementing new ancillary fees and helps explain 

why, in some cases, carriers may implement new fees, but then eliminate them as the full 

system-level effects are become clearer. In the case of standby fees, it would be 

interesting for a carrier such as American that recently implemented a “no free 

unconfirmed standby” policy to see if passenger misconnections and the average delays 
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experienced by disrupted passengers increased. If so, one may assume that American will 

revert back to its more generous standby policy (following the lead of similar changes 

recently implemented by AirTran and Continental). 

 

 

3.7. Looking Ahead 

An examination of ancillary fees reveals that all carriers – including Southwest Airlines – 

have implemented new fees over the past few years. How carriers have elected to 

implement these fees, though, varies. Network carriers that have a more loyal repeat 

customer base are more likely to establish fees while simultaneously creating an elaborate 

system of fee waivers for their premier customers. Given premier customers typically 

represent a large percentage of a carrier’s ticketing revenue, it seems unlikely that carriers 

would decide to start charging these customers fees in the future. Exempting premier 

customers from ancillary fees can be viewed as a way by which carriers can add value to 

their frequent flyer programs and encourage repeat business. 

 The analysis of Southwest’s implementation of fees is particularly enlightening 

and helps explain why the debundling trends seen in the United States are distinct from 

those in Europe and other parts of the world. Southwest is a powerful domestic marketing 

force, but it is a carrier that historically has had a strong philosophy of not charging for 

fees that were once bundled into its base fare. Southwest also places a high priority on its 

brand and maintaining long-term repeat customer business. Through its recent merger 

with AirTran, Southwest should be able to further expand its domestic market share as 

well as begin to expand to international markets. As Southwest grows, U.S. carriers may 

be pressured into revoking those fees that at one time were bundled into the ticket price. 
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It will be particularly interesting to see, after Southwest completes its merger with 

AirTran, how much additional pricing pressure Southwest is able to put on Delta out of 

Atlanta’s Hartsfield-Jackson airport. If a major carrier such as Delta revokes baggage 

fees, all other major carriers will likely do the same. This highlights the importance of 

viewing the short-term and long-term consequences of ancillary fees in terms of existing 

market competition. For example, although the events of 2008 and 2009 led to rapid 

debundling, one of the benefits has been that many airlines did well financially in 2010. 

However, if demand for air travel starts to outpace available supply, one would expect 

airlines to start dropping or eliminating fees as they compete to win these additional 

customers. 

 Viewing changes through the lens of current market positions also provides 

insights into why similar campaigns have failed in the past, and which ancillary revenue 

sources are likely to survive moving forward. One example of a campaign that “failed” is 

American Airline’s promotion of extra leg room throughout coach in the late 1990s and 

early 2000s. American invested millions of dollars in retrofitting its planes to offer more 

legroom, but it operated these aircraft primarily on short-haul domestic flights, many of 

which were facing increasing pricing pressure from Southwest. Consequently, customers 

were not willing to pay for extra leg room on short flights. In contrast, Delta recently 

announced that it was adding legroom in coach – but to serve customers in their long-

haul international markets. These international markets currently face less price 

competition, and extra legroom in this context is more valuable to consumers (suggesting 

they are more willing to pay). However, as with American’s experience, if market 

competition changes and low-cost carriers begin to compete on international markets 
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and/or offer better products on these markets, then Delta’s long-term ability to charge a 

premium for these seats will be diminished. 

 What is clear from this discussion is that the debundling phenomena in the United 

States has been rapid and is still in transition. In the long term, it would not be surprising 

if low cost carriers competing with Southwest Airlines adopted a wider range of ancillary 

fees, whereas network carriers followed the trends of Delta and United and eliminated 

many of the fees that were recently introduced for services that once were perceived to be 

free to consumers. For example, when Delta merged with Northwest, it initially adopted 

Northwest’s practice of charging for preferred seats (Delta Air Lines, 2008); however, 

due to backlash from its premium customer base, these fees were quickly eliminated. 

Similarly, United used to charge for close-in ticketing fees for those customers redeeming 

frequent flyer miles (i.e., fees that were charged if customers redeemed their miles for 

tickets within 21 days of departure), but recently eliminated these fees. Delta also 

adopted a similar policy as of June 3, 2010 (Delta Air Lines, 2010). Both of these 

examples suggest that adoption of ancillary fees is still dynamic. The two major sources 

of revenue generation – baggage and seat fees – will likely be the longest surviving fees. 

However, as the U.S. market returns to healthier economic times, even these fees may 

disappear, particularly if Southwest stays true to its core pricing and customer 

philosophies.  
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3.8. Summary 

Looking ahead, the “ancillary revenue” phenomenon is likely to continue in the U.S. 

market among low cost and network carriers. Numerous airlines are reporting the 

importance of ancillary fees in their investor reports and/or listing generation of these 

fees as a top priority (e.g., see AirTran Holdings Inc., 2009). In its March 26, 2010, 

presentation to Barclay Capital High Yield Bond and Syndicated Loan Conference, 

Continental stated that one of its five top priorities in 2010 was to “increase ancillary 

revenues through customer choice” (Continental 2010a; Continental 2010b). Continental 

elaborated, stating that it plans to grow these ancillary revenue streams through product 

debundling (baggage fees, booking fees, in-flight amenities) and product enhancements 

including day-of-departure upgrades, preferred coach seating, premium wines and 

liquors, PetSafe and “many others to come” (Continental, 2010a). 

 What will be interesting to see is whether future ancillary revenue enhancements 

follow the trends seen with baggage fees (in which clear market segmentation quickly 

emerged); or if technological, customer acceptance, market competition, and other 

constraints will hinder airlines’ ability to universally adopt ancillary fees (as in the case 

of seat pricing). What is clear, however, is that the debundling phenomena has arrived in 

the United States, and the full implications of debundling have yet to be realized but will 

likely be important to account for in both the public and private sectors. 
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CHAPTER 4: PREMIUM COACH SEAT PURCHASING BEHAVIOR 

 

Mumbower, S., Garrow, L.A. and Newman, J.P. (2013) Investigating airline customers' 
premium coach seat purchases and implications for optimal pricing strategies. 
Working paper, Georgia Institute of Technology. 

 

4.1. Abstract 

We investigate factors that influence airline customers’ purchases of premium coach 

seats using a database of online prices and seat map displays collected from JetBlue’s 

website. Results show that multiple factors influence purchasing behavior; these factors 

include the amount of the seat fee, how far in advance the ticket is purchased, the number 

of passengers traveling together, and load factors (as revealed through seat map displays).  

We find that customers are between 2 and 3.3 times more likely to purchase premium 

coach seats (with extra legroom and early boarding privileges) when there are no regular 

coach window or aisle seats that can be reserved for free. In addition, we find that 

customers who purchase tickets closer to the departure date are less price elastic and are 

willing to pay higher seat fees. We use these model results to show that JetBlue’s seat 

fees are currently underpriced in many markets; an optimal static fee would increase 

revenues by 8% whereas optimal dynamic fees would increase revenues by 10.2%. In 

addition, if JetBlue were to leave their seat fees unchanged and instead blocked certain 

rows of seats for premier customers, they could potentially increase revenues by 12.8%.  

This finding underscores the importance of ensuring customers are not inadvertently 

misled into purchasing premium seats by seat map displays that block seats for premier 

customers.  
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4.2. Introduction  

 
Over the course of the last decade, airlines have experienced numerous financial 

challenges, including ballooning costs and intense competition. Many of these challenges 

came to a head around 2008, when oil prices soared to more than $130 a barrel (Clifford, 

2008) and the global economic crisis hit, dropping the Dow Jones market value by 33.8% 

(the third worst calendar year performance on record) and triggering a worldwide 

slowdown in economic activity, including air travel (Seeking Alpha, 2009). Many major 

airlines had already implemented significant cost-cutting strategies during the early 

2000’s as part of their bankruptcy restructuring and merger processes, limiting their 

ability to cut expenses, and the deep market penetration of the Internet, combined with 

low cost carrier competition, hindered the ability to raise fares. Consequently, “2009 

proved to be the worst year on record for U.S. airlines, in terms of year-over-year revenue 

declines” (Southwest Airlines, 2009). 

 In response, many airlines sought to increase revenues without increasing fares by 

creating new ancillary revenue sources, such as fees for checked baggage, on-board food, 

and seat reservations and upgrades. These services were once bundled into the base price 

of a ticket, but airlines began to price them separately.  In addition, airlines increased the 

cost of existing ancillary services, including fees for redeeming mileage award tickets, 

exchanging tickets, and checking pets. Moreover, rather than being a temporary solution 

to help get airlines through a rough year, these fees have become a permanent fixture of 

the air travel marketplace. According to the Bureau of Transportation Statistics, revenues 

from ancillary fees have rapidly increased in the past few years: for U.S. carriers with 

operating revenues over $20 million, reported ancillary revenues increased 172% over 
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five years, from $3.6 billion in 2007 to $9.8 billion in 2011 (U.S. DOT, 2012). Similar 

trends are observed worldwide. A recent report sponsored by Amadeus and IdeaWorks 

that represents a broader set of airlines and more comprehensive set of ancillary fees 

finds that in 2007, 23 airlines posted ancillary revenues of $2.45 billion and in 2011, 50 

airlines reported revenues of $22.64 billion (Sorensen and Lucas, 2012). 

 Ancillary revenue streams are important to airlines, sometimes turning a loss-

making carrier into a profitable one. That was more or less the case for JetBlue in 2011, 

which reported a net profit of $86 million and seat fee revenues of more than $120 

million (JetBlue Airways, 2011). For some carriers, ancillary revenues can represent a 

major portion of overall revenues. In the U.S., Spirit Air is notorious for its extremely 

low base fares and “optional” fees for services such as booking online or by phone, 

printing a boarding pass at the airport, and carrying on luggage; in 2011, Spirit earned 

33.2% of its revenue from these fees. Major carriers such as United/Continental (13.9%), 

Alaska (14.1%), and American (8.8%) earned a notable percentage of revenue from 

ancillary fees as well (Sorensen and Lucas, 2012). Given that the margins on the ancillary 

services are generally quite large, these fees in many cases represent most or all of the 

carrier’s operating profit.   

 Despite the prevalence and growing importance of ancillary fees, few studies have 

examined the direct impact these fees have had on customers’ purchasing behavior, let 

alone the secondary effects of these fees. For example, when airlines began charging for 

checked baggage, the amount of carry-on luggage increased. As a result, demand for 

overhead bin space often exceeded what was available. This ultimately led to higher 

demand for seats with early boarding privileges that give customers earlier access to 
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overhead space. Thus, it appears that by introducing new fees for checked baggage, 

airlines were also able to begin charging more for seats with early boarding privileges. 

Similarly, as aircraft load factors increase, passengers realize the likelihood of having an 

empty seat next to them drops, and the value of a premium seat with extra personal space 

increases.  

 Airline operators continue to search for ways to increase ancillary revenues, 

without negatively impacting sales of basic tickets so much as to cancel out these revenue 

gains. A principle avenue for achieving such increases is through making fees for 

ancillary products more complex and differentiating fees across customer groups (e.g., by 

reserving or blocking premium seats for premier customers).  

 On the other hand, customers generally dislike added fees, and in particular 

dislike fees that appear to be hidden, arbitrary, or unfair. From the regulatory perspective, 

agencies want to ensure that fees are displayed in a way that is easy for consumers to 

understand. One issue that is of particular concern is whether the airline practice of 

blocking seats for preferred customers (i.e., showing certain seats as unavailable for non-

preferred customers without elite status in an airline’s frequent flier program and/or 

showing certain seats as unavailable for those customers who do not purchase tickets for 

higher yield fare classes) effectively “tricks” customers into thinking a plane is full when 

in fact it is not, leading customers to buy an upgraded premium coach seat.  However, 

answering this question is difficult, not only for regulatory agencies but also for the 

airlines themselves, because the majority of airlines only keep records of the customers’ 

final seat assignments.  Without more extensive data on the allocation of seat assignments 

across the entire booking horizon, it is difficult to recreate seat map displays shown to 
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customers at the time of booking (i.e., it is difficult to know what seat choices the 

customer had at the time of booking).  Airlines could certainly collect this information 

directly, but would need to make major investments in technology infrastructure to do so, 

and they are unlikely to make such an investment unless they have a high level of 

confidence that they will receive a decent return on their investment. Regulatory agencies 

also do not have access to proprietary carrier data, and would need to conduct any 

independent investigations into this issue using publically available data or stated 

preference surveys. 

 Our study contributes to the literature on ancillary fees by providing some of the 

first insights into the role of load factors and seat map displays on customers’ premium 

seat purchases. We investigate airline customers’ seat purchasing behavior using a 

database of revealed preference data that includes online prices and seat maps from 

JetBlue’s website. This data is used to investigate the probabilities that customers will 

pay between $15 and $65 to reserve a premium coach seat that includes extra legroom 

and early boarding privileges. By tracking seat maps and prices across the booking 

horizon, the JetBlue data provides the ability to estimate binary logit models of seat 

choice, which can be used to understand how demand for its premium coach seat product 

varies across the booking horizon, across markets, and as a function of load factors (as 

revealed through seat map displays). 

 The rest of this paper is organized as follows: Section 2 provides additional 

background context on premium seat fees.  Sections 3 and 4 provide an overview of the 

data and modeling methodology.  Section 5 presents results and Section 6 uses model 
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results to assess different pricing and seat display policies.  The paper concludes with a 

discussion of major findings. 

 

4.3. Premium Seat Fees 

One of the more common types of ancillary fees is a premium seat fee, which is charged 

to customers wanting to reserve a “good” seat on the aircraft. As of 2013, all mainline 

carriers in the U.S. with annual operating revenues exceeding $1 billion are charging seat 

fees, with the exception of Alaska and Southwest. The implementation of these fees 

varies by carrier, and many of the airlines waive certain fees for elite customers and/or 

high yield tickets. Table 4.1 summaries U.S. airlines’ seat fee policies and charges. 

 Some airlines charge fees to reserve seats that do not provide extra legroom but 

instead allow customers to board early and gain early access to overhead bin space. With 

many airlines charging checked baggage fees even for the first bag, early access to 

overhead bin space is desirable. These priority boarding seats, often called “preferred” 

seats, typically include seats in popular locations on the plane that were once free to 

reserve, such as exit and bulkhead rows (which may offer a little extra legroom) and seats 

near the front of the aircraft, especially aisle and window seats near the front of the plane. 

Fees for preferred seats range from $4 to $45 per leg for domestic flights.   

 Other airlines charge fees to reserve seats that provide both extra legroom and 

often early boarding. These seats are often referred to as “premium” economy or 

“premium” coach seats. Fees for premium seats range from $5 to $99 per leg for 

domestic flights. 
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Table 4.1: U.S. Airlines’ Seat Fee Policies as of June 2012 
Airline Extra Legroom? Fee Exemptions? Typical Domestic Fees 

AirTran No Yes $6-$20 
Alaska No N/A No charge 
American No Yes $4-$29 
Delta Yes Yes $19-$99 
Frontier Yes Yes $5-$50 
JetBlue Yes No $15-$65 
Southwest1 No Yes $10 
United Yes Yes $9-$89 
US Airways No Yes $15-$45 
 1Southwest charges $10 for early check-in which has a high probability of boarding with the first group 
and improving seat selection. 
 

 

4.3.1. The Airline Perspective 

Due to the need to quickly create additional revenue streams during the crisis, there was 

little to no research done by airlines to determine customers’ willingness to pay for 

premium and preferred seats prior to implementation of these fees. Further, technology 

constraints limited how airlines could charge fees.  For example, airlines did not have the 

ability to change seat upgrade fees across the booking horizon; that is, the same fee was 

charged to customers regardless of how far in advance of departure they booked. This 

limitation persists today for most airlines, although many are now in a position where 

they can make investments in revenue enhancing opportunities, including technology to 

get around these dynamic pricing limitations. There are also other opportunities to create 

marginal improvements in seat fee revenues. For example, if airlines have a better 

understanding of customers’ behavior and willingness to pay for certain amenities, they 

can make long range plans to acquire and configure new airplanes appropriately to 

capture more value from future customers: Are enough customers willing to pay enough 

money for premium coach seats (with extra legroom) that it is worth sacrificing a row of 
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regular coach seats from the plane? Should airlines invest in technology that will enable 

them to dynamically price ancillary fees over the booking horizon? If so, what are the 

optimal revenue-generating fees they should charge?   

 Although it has been 5 years since ancillary fees became a prominent part of the 

air travel landscape, few studies have examined customers’ willingness to pay for such 

fees, including premium seat fees. One study based on stated preference data from 

Resource Systems Group, Inc. found that the average customer was willing to pay $19 

more for a window seat and $18 more for an aisle seat without extra legroom (Weinstein 

and Keller, 2012).  However, that study did not control for other factors that influence 

willingness to pay, such as plane load factors. There is a research need to investigate the 

role of seat map displays on customers’ premium seat fee purchases, and to investigate 

revenue potential associated with dynamically pricing seat fees across the booking 

horizon. Our study contributes to this debate by investigating these two research 

questions.  This objective is consistent with prior studies published in Transportation 

Research Part A that have examined one or more aspects of air travel behavior (e.g., see 

Brey and Walker, 2011; Chen, 2008; Lee et al., 2012; Lu and Peeta, 2009; Peeta, Paz and 

DeLaurentis, 2008; Tsamboulas and Nikoleris, 2008).  

 To our knowledge, only one major airline (United) currently collects data about 

seat displays across the booking horizon, and uses it to improve yields from its premium 

coach product. In the quarter after implementing the “Shares” yield management system, 

which allows for dynamic pricing of Economy Plus seats, United reported a 25% increase 

in revenues associated with Economy Plus, with only about a third of that increase 

attributable to an expansion in the number of Economy Plus seats available in the fleet 

93 
 



 

(Ranson, 2012). As one of the world’s largest airlines, United is better positioned than 

many other airlines to absorb the large fixed cost entailed in developing a dynamic 

pricing system for ancillary revenues. In contrast with a full rollout of a comprehensive 

integrated system, the data collection approach we employ in this paper represents a 

comparatively small investment, which can help an airline decide whether to undertake 

the larger investment to actually implement a dynamic pricing system. 

 

4.3.2. The Customer Perspective 

Seat fee and reservation policies have the potential to greatly impact customer 

satisfaction levels both positively and negatively. We are not aware of any empirical 

research that that examines how characteristics of seat fee policies influence customer 

satisfaction levels. However, searching online through comments that airline customers 

have posted on various news articles, travel blogs, and travel websites reveals that 

customers have a wide range of concerns and opinions about seat policies. For example, 

CNN recently published a series of four articles on their website which discuss seat 

reservations and how customers feel about seat fees (Hume, 2012a, 2012b; Patterson 

2012a, 2012b). One of these articles had nearly 2,000 comments posted by readers. 

Customer satisfaction with seat reservations seems to be impacted by many factors, 

including ease of reserving seats for a group traveling together and how seats are 

displayed on seat maps. 

 Seat policies that impose fees to reserve window and aisle seats decrease the 

number of contiguous seats available, which may make it more difficult for groups and 

families to sit together without paying those fees. Gate agents will generally try to 
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accommodate families as well as they can, but if there are not extra seats available, then 

they may not always be able to work out a way for families to sit together. Due to 

widespread media coverage about this issue, Senator Charles Schumer recently (May 27, 

2012) requested that Transportation Secretary Ray LaHood issue rules preventing airlines 

from charging parents more to sit next to their children (Schumer Press Release, 2012). 

Senator Schumer also asked the industry’s trade group, Airlines for America, to try to 

persuade carriers to voluntarily waive the fee for families. A few days later at a Senate 

panel, Secretary LaHood responded by saying that he has been urging airlines against 

charging more for popular seats (without extra legroom). However, he also said that he 

“can't tell airlines what fees they can charge” (Jansen, 2012). Although charging fees for 

aisle and window seats may decrease customer satisfaction levels of groups traveling 

together, it could also negatively impact other travelers. Many customers have noted that 

people are asking them to trade seats more often now than in the past, and have posted 

comments on blogs describing scenarios where they paid for a window or aisle seat and 

someone asked them to trade seats so that they could sit by a family member. On the 

other hand, policies that reserve and/or charge for window and aisle seats may increase 

customer satisfaction levels of certain types of travelers. Many business travelers choose 

to fly coach instead of business class. These travelers often book a flight a few days in 

advance of the departure date when many seats are full and end up purchasing a ticket 

that is priced much higher than tickets purchased by people who booked far in advance. 

Policies that allow these customers to reserve a better seat may increase their satisfaction 

with the airline. Reserving seats for frequent fliers would also seem to increase 

satisfaction.  
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 Another major issue of concern that customers have raised is how seat 

availabilities are displayed on seat maps. Airlines often block certain seats and do not 

allow customers to reserve these seats in order to set aside a few seats for accommodating 

passengers with disabilities or special needs.  Now, with some airlines adopting policies 

that also reserve seats for elite members and higher-yield fares only, this means that other 

customers may be shown that these seats are “unavailable” on seat maps. This seems to 

have led to some confusion among passengers upon boarding. Some customers have 

complained that upon booking a ticket, the seat map showed that few regular seats were 

available, which caused them to consider purchasing an upgraded seat. However, upon 

boarding the plane, they noticed that many more seats were actually available. Bill 

McGee, a contributing editor to Consumer Reports and former editor of Consumer 

Reports Travel Letter, along with other columnists have expressed concerns about how 

available seats are displayed to customers (McCartney, 2011; McGee, 2012a, 2012b). 

Comments these columnists have received from customers indicate that some customers 

feel they have been misled by the information displayed on seat maps, but it could be that 

they do not completely understand the airlines’ seat policies. For example, many of the 

airlines open up preferred seats (without extra legroom) that can be reserved (sometimes 

for free) during check-in by non-elite customers, but some people may not understand 

that or think about that when looking at a seat map.  If customers feel like they have been 

tricked in to purchasing upgraded seats, then this could greatly decrease customer 

satisfaction with an airline. 

 In summary, the main concerns issued by customers and government officials 

relate to decreasing the number of contiguous seats (that are free to reserve) for families 
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to sit together, and misleading customers into making preferred or premium seat fee 

purchases through displaying seat maps that are difficult to understand and/or that give 

the impression a plane is near capacity through showing seats as being 

occupied/unavailable to reserve.  

 

4.4. Data  

This section describes the database that was compiled from online pricing and seat map 

information from JetBlue’s website. 

 

4.4.1. Overview 

To analyze how customers purchase premium coach seats with extra legroom, automated 

web client robots (or webbots) were used to query JetBlue’s website and obtain detailed 

itinerary, fare, and seat map information for nonstop flights on a daily basis. Our paper is 

one of many that have used airline webbot data to analyze pricing and/or demand trends 

(e.g., see Bilotkach, 2006; Bilotkach and Pejcinovska, 2012; Bilotkach et al., 2010; 

Button and Vega, 2006; Button and Vega, 2007; Horner et al., 2006; McAfee and Vera, 

2007; Mentzer, 2000; Mumbower and Garrow, 2010; Newman et al., 2013; Pels and 

Rietveld, 2004; Pitfield, 2008; Pope et al. 2009). The period of data collection ran from 

8/2/2010 through 10/2/2010. During this time period, queries were run to collect airfares 

and seat maps for a rolling set of departure dates. For example, when the data collection 

began on 8/2/2010, information for flights departing on 9/2/2010, 9/3/2010, ... , to 

10/2/2010 was obtained. For the next day of data collection, 8/3/2010, information for the 

same flight departure dates was obtained. Collecting data in this way provides 
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information for each flight in a market for 30 departure dates and over a booking period 

from 1 to at least 28 days before flight departure. 

 The dataset includes 22 markets, across several different lengths of haul. Table 

4.2 provides a list of airport codes and airport names in our data. Table 4.3 provides a list 

of the markets collected, along with market characteristics and seat fees, average fares, 

and number of bookings. A total of 59,242 bookings were observed (46,920 regular 

coach seat bookings and 12,322 premium coach seat bookings). Thus, 20.8% of the 

observed bookings are for premium coach seats, hereafter referred to as Even More™ 

Space (EMS) seats12, which is the branding used by JetBlue. At the time of data 

collection, JetBlue’s EMS seats provided 4 to 5 more inches of extra legroom over their 

regular coach seats13, and also came with early boarding privileges. 

 After the online data was collected, seat maps for each day were used to compile 

daily booking (or demand) data for regular coach and premium coach seats. When a 

customer books a ticket with JetBlue, they have the option to purchase an EMS seat for 

between $15 and $65, or they can reserve a regular coach seat for free. For the most part, 

EMS seats are priced by length of haul with higher prices for longer flights. EMS seat 

prices are the same for every flight in a particular market, for all EMS seats on the 

aircraft, and over the entire booking horizon. 

                                                 

 
 
 
 
 
12 At the time of data collection, JetBlue referred to these seats as Even More™ Legroom (EML) seats but 
subsequently rebranded these seats as Even More™ Space (EMS) seats.  We use EMS terminology 
throughout the paper. 
13 Note that JetBlue’s regular coach seats have more legroom than other airlines’ regular coach seats with a 
pitch of 32-34 inches as compared to an average pitch of 30-32 inches on most other carriers.    
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Table 4.2: Airport Codes and Names 

Airport Code Name of Airport, City and State 
AUS Austin-Bergstrom International Airport, Austin, Texas 
BOS Logan International Airport, Boston, Massachusetts 
BQN Rafael Hernández Airport, Aguadilla, Puerto Rico 
BUF Buffalo Niagara International Airport, Buffalo, New York 
DEN Denver International Airport, Denver, Colorado 
EWR Newark Liberty International Airport, Newark, New Jersey 
FLL Fort Lauderdale Hollywood International Airport, Fort Lauderdale, Florida 
IAD Washington Dulles International Airport, Washington D.C. 
JFK John F. Kennedy International, New York City, New York 
LAS McCarran International Airport, Las Vegas, Nevada 
LAX Los Angeles International Airport, Los Angeles, California 
LGA La Guardia Airport, New York City, New York 
MCO Orlando International Airport, Orlando, Florida 
OAK Oakland International, Oakland, California 
ORD Chicago O'Hare International Airport, Chicago, Illinois 
PBI Palm Beach International Airport, West Palm Beach, Florida 
PDX Portland International Airport, Portland, Oregon 
SFO San Francisco International Airport, San Francisco, California 
SYR Syracuse Hancock International Airport, Syracuse, New York 
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Table 4.3: Market Characteristics and Observed Fares/Bookings, by Market and Type Haul 
  Market Characteristics Observed Fares and Bookings 

Market 
Type of 
Haul1 

One-
way 

Distance 

Avg. 
Num 

Flights 

One-
way 
Seat 
Fee 

Seat 
Fee 
per 
Mile 

Avg. 
One-
way 
Fare 
Paid2 

Total 
Bookings 

Total 
EMS 
Seats 

Booked 

Percent 
EMS  

Bookings 

JFKBQN E-PR 1,576 2 $30 $0.019 $147 2,133 112 5.3% 
MCOBQN E-PR 1,129 1 $25 $0.022 $118 975 54 5.5% 
E-C Averages/Totals: 1,437 2 $28 $0.020 $138 3,108 166 5.3% 
BOSIAD E-E 500 7 $15 $0.030 $92 6,082 1,086 17.9% 
BOSMCO E-E 1,121 5 $30 $0.027 $130 2,407 416 17.3% 
BUFMCO E-E 1,011 1 $25 $0.025 $122 297 55 18.5% 
EWRMCO E-E 937 4 $19 $0.020 $125 2,486 520 20.9% 
IADMCO E-E 758 1 $25 $0.033 $102 734 194 26.4% 
JFKFLL E-E 1,069 7 $35 $0.033 $122 8,998 1,705 18.9% 
JFKPBI E-E 1,028 4 $35 $0.034 $141 4,843 1,152 23.8% 
LGAFLL E-E 1,076 5 $35 $0.033 $126 5,543 1,291 23.3% 
SYRMCO E-E 1,053 1 $25 $0.024 $134 782 163 20.8% 
E-E Averages/Totals: 943 5 $29 $0.031 $120 32,172 6,582 20.5% 
BOSDEN E-MW 1,754 2 $40 $0.023 $183 1,950 376 19.3% 
JFKORD E-MW 740 3 $30 $0.041 $119 2,600 371 14.3% 
MCOAUS E-MW 994 1 $35 $0.035 $128 1,049 150 14.3% 
E-MW Average/Totals: 1,176 2 $35 $0.033 $144 5,599 897 16.0% 
BOSLAX E-W 2,600 2 $50 $0.019 $184 2,549 547 21.5% 
BOSSFO E-W 2,700 2 $55 $0.020 $232 2,071 609 29.4% 
FLLSFO E-W 2,580 1 $50 $0.019 $152 999 150 15.0% 
JFKLAS E-W 2,240 5 $50 $0.022 $252 3,761 980 26.1% 
JFKLAX E-W 2,470 4 $50 $0.020 $214 4,907 1,322 26.9% 
JFKOAK E-W 2,576 2 $60 $0.023 $211 2,109 562 26.6% 
JFKPDX E-W 2,454 1 $50 $0.020 $257 944 160 16.9% 
JFKSFO E-W 2,580 2 $60 $0.023 $285 1,023 347 33.9% 
E-W Averages/Totals: 2,494 3 $52 $0.021 $222 18,363 4,677 25.5% 
Avg/Total All Markets: 1,494 4 $37 $0.027 $157 59,242 12,322 20.8% 

1 E-PR = East coast to Puerto Rico flights, E-E = East coast to east coast flights, E-MW = East coast to 
Midwest flights, E-W = East coast to west coast flights (JFKLAS is included due to length of haul). 

2Average fare is the average fare that was paid when tickets/seats were booked. 
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 We determined how many regular coach seats and EMS seats were sold on a 

particular day by determining when seats changed from being shown as “available” for 

one day but “reserved” for the next day. At this point, it is helpful to look at a seat map to 

see what kind of seat choices a customer can make. Figure 4.1 shows a seat map of how 

JetBlue’s Airbus A320 seats were configured at the time of data collection14. Darker-

colored seats are “available” and can be reserved, and lighter-colored seats have already 

been “reserved”. The plane has a total of 150 seats, which include 114 regular coach seats 

and 36 EMS seats. The seat configuration of the A320 is as follows: rows 1, 6B-E, and 

25D-F are always “blocked” and never available for customers to reserve online (blocked 

seats are typically set aside in order to provide advance seat assignments, as requested, to 

customers with disabilities); rows 2-5 are EMS seats in the front of the plane; rows 6-9 

are regular coach seats in front of the emergency exit rows; rows 10-11 are EMS seats in 

the emergency exit rows; and rows 12-25 are regular coach seats behind the emergency 

exit rows.  

  

  

                                                 

 
 
 
 
 
14 At the time of data collection, JetBlue operated two types of aircraft: Airbus A320 and Embraer ERJ-
190. Because the Embraer aircraft only accounts for 29% of JetBlue’s fleet and contains just four premium 
coach seats per flight (JetBlue Airways, 2011), only the Airbus A320 aircraft was used in the analysis.   
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Figure 4.1: Seat Map Display of a JetBlue Plane  

  

                
                                   Source: JetBlue.com 

  

 
  

 We assume that any customer who booked a ticket also selected a seat, as regular 

coach seat selections were free and the website prompts the customer to select a seat 

during the reservation process. We exclude customers who may have reserved a blocked 

seat from the analysis, as we have no way to distinguish between instances in which the 

blocked seat is occupied or is available (to disabled customers). We also exclude negative 
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demand numbers from analysis, which occur when one or more customers cancel their 

reservations (and no new reservations occur on that booking date for that flight). In this 

sense, our demand estimates for regular coach and EMS seats can be viewed as lower 

bounds on demand, as they represent the minimum number of customers who reserved a 

seat for a given booking date and departure date.  The actual demand may be slightly 

higher than what we can observe from the seat maps, as we cannot account for cases in 

which new bookings and cancellations occur for the same booking date and departure 

date combinations.  Based on an assessment of the frequency of negative booking counts 

(which accounted for a small percentage of the observations in the data), we conclude 

that the assumptions used to create demand estimates are reasonable. 

 

4.4.2. Selection Bias 

Using JetBlue as the airline for our analysis enables us to control for potential sources of 

selection bias. Since JetBlue customers may reserve a regular coach seat for free (or a 

premium coach seat for a fee) at the time of booking, we expect the majority of 

customers to reserve seats at the time of booking. Further, JetBlue does not overbook its 

flights, which means that all customers have the option to select a seat at the time of 

booking.  Importantly, JetBlue is also the only airline in the U.S. that does not waive seat 

fees for certain customers, i.e., any individual who wants to sit in the premium coach 

section must pay to do so. Replicating this study on another airline would introduce 

selection bias, as customers who receive premium seat assignments for free or at a 

discount cannot be identified from the online data. In our data, however, this source of 
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selection bias does not exist: all customers who reserve a premium seat must pay to do 

so. 

 The exact fee that customers pay to reserve a premium seat is known by the 

researcher and is charged on a per-flight basis. Thus, network-level effects are not 

relevant in the context of our problem, as connecting passengers would need to pay a 

separate premium seat fee for each flight on their itinerary. On the other hand, the exact 

basic fare paid by the customer is not known, as JetBlue offered both non-refundable and 

refundable fares. At the time of data collection, JetBlue’s default website search option 

displayed one non-refundable fare for each flight. However, customers could search for 

refundable fares by changing the search options (and one refundable fare for each flight 

would be displayed). Still, the data does include the price of the non-refundable one-way 

leg-based fare for the flight, which represents a floor on the actual fare paid, and is 

strongly correlated with the actual ticket fare. As we are studying price elasticity with 

respect to the seat upgrade fee and not the basic fare, the noise in the basic fare data 

represents a loss of some information, but will not trigger a fundamental bias in our 

results. 

 Finally, it is important to note that we have not included passengers who choose 

to purchase a premium seat at the time of check-in.  To do this, we would have needed to 

query JetBlue’s website multiple times within the 24 hours check-in period prior to flight 

departure. Moreover, some data would still be unobservable, as JetBlue does not sell 

tickets online in the final 90 minutes before departure, but they do sell seat upgrades at 

the airport during this time. The focus of our paper is on determining if seat map displays 

shown at the time of booking influence premium seat purchases and determining if 
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airlines have an incentive to make premium seat fees more complex by dynamically 

pricing them across the booking horizon.  Both of these problems require knowledge 

about bookings that happen prior to the day of check-in. The underlying behavioral 

problem for day of check-in premium seat purchases is distinct from the problem that 

looks at seat fee purchases at the time of the initial booking. At the time of booking, the 

addition of a $40 seat fee on top of a $200 fare may seem large whereas at the time of 

check-in, faced with sitting in the back of a full plane, a $40 fee may appear reasonable. 

The delay between the time of purchase and time of departure, in addition to more 

complete information on load factors at the time of check-in, may influence day-of-

departure upgrades. A distinct modeling approach may be advisable to examine day-of-

booking seat fee purchases versus day-of-departure seat fee purchases.  Examining day-

of-departure seat fee purchases is beyond the scope of our study. 
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4.5. Methodology 

A binary logit model was used to calculate the probability of purchasing an EMS seat, 

given that a ticket was purchased. In this model, a customer can choose between two 

o ipt ons15

൜
ܻ ൌ 1,                                                                               ݐܽ݁ݏ ܵܯܧ ݊ܽ ݀݊ܽ ݐ݁݇ܿ݅ݐ ܽ ݕݑܤ
ܻ ൌ 0,              .ሻ݁݁ݎ݂ ݎ݂ ݐܽ݁ݏ ݄ܿܽܿ ݎ݈ܽݑ݃݁ݎ ܽ ݁ݒݎ݁ݏ݁ݎ ሺܽ݊݀ ݕ݈݊ ݐ݁݇ܿ݅ݐ ܽ ݕݑܤ

:    

Several variables were compiled from the online itinerary displays and seat maps, which 

are summarized in Table 4.4.  For most of the variables, the definitions and descriptions 

are straight-forward to interpret. Variables related to seat availabilities, prices and group 

bookings merit additional discussion. 

 

  

                                                 

 
 
 
 
 
15 Six observations (bookings) were removed from the data, as the customer did not have both regular 
coach seats and EMS seats to choose from. 
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Table 4.4: Variables and Descriptions 
Variable Definition 

Price Variables 
seatFeePerMile One-way EMS seat fee divided by the one-way market distance 

lowestPrice Value of one indicates booking was for the lowest priced flight 
available on itinerary screen 

differenceOverLowestPrice Price of booked flight minus lowest available priced flight on 
itinerary screen 

Seat Availability Variables1 

Regular Coach Front W/A Avail Value of one indicates regular coach window/aisle seats available 
in front of plane 

EMS W/A Seats Avail Value of one indicates EMS window/aisle seats available 

Regular Coach  Back1 W/A Avail Value of one indicates regular coach window/aisle seats available 
in back plane section 1 

Regular Coach  Back2 W/A Avail Value of one indicates regular coach window/aisle seats available 
in back plane section 2 

Regular Coach  Back3 W/A Avail Value of one indicates regular coach window/aisle seats available 
in back plane section 3 

Regular Coach Front Seats Avail Value of one indicates regular coach seats available in front of 
plane 

Regular Coach  Back1 Seats Avail Value of one indicates regular coach seats available in back plane 
section 1 

Regular Coach  Back2 Seats Avail Value of one indicates regular coach seats available in back plane 
section 2 

Regular Coach Back23 W/A 
Interaction 

Value of one indicates  regular coach window/aisle seats available 
in back plane sections 2 and 3 

Regular Coach Back123 W/A 
Interaction 

Value of one indicates  regular coach window/aisle seats available 
in back plane sections 1, 2 and 3 

Group Travel Variables 

NumberBookTogether1 Value of one indicates a booking made for an individual 

NumberBookTogether2 Value of one indicates a booking made for a pair traveling 
together 

NumberBookTogether3 Value of one indicates a booking made for three people traveling 
together 

NumberBookTogether4 Value of one indicates a booking made for four people traveling 
together 

NumberBookTogether5or6 Value of one indicates a booking made for five or six people 
traveling together 

Day of Week Variables 
ddow1, …., ddow7 Value of one indicates flight departs on a Sun, Mon.,…., Sat 
bdow1, …., bdow7 Value of one indicates flight was booked on a Sun, Mon.,…., Sat 

Number of Days from Flight Departure Dummy Variables 

dfd1, dfd2,…, dfd28 Value of one indicates a booking made 1, 2, …, 28 days from 
flight departure 

1Corresponding row numbers for each section of the plane are provided in Table 4.5. 
Note: EMS = Even More™ Space  
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Table 4.4: Variables and Descriptions (Continued) 
Variable Definition 

Departure Time of Day Variables 
earlymorning Value of one indicates flight departs 5am-7:59am 
morning Value of one indicates flight departs 8am-11:59am 
afternoon Value of one indicates flight departs Noon-4:59pm 
evening Value of one indicates flight departs 5pm-8:59pm 
lateevening Value of one indicates flight departs 9pm-11:59pm 

Seat Fee and Days from Flight Departure (DFD) Interaction Variables 

seatFeePerMile_DFD1-7  seatFeePerMile for bookings made 1 to 7 days from flight 
departure, zero otherwise 

seatFeePerMile_DFD8-14  seatFeePerMile for bookings made 8 to 14 days from flight 
departure, zero otherwise 

seatFeePerMile_DFD15-28  seatFeePerMile for bookings made 15 to 28 days from flight 
departure, zero otherwise 

Other Variables 

Market Dummies Dummy variable for each market 
Note: EMS = Even More™ Space; 
 

 

4.5.1. Seat Availability Variables 

Seat availability variables account for seat choices available to customers when booking a 

flight. These variables divide the plane into sections and provide information on whether 

a given section has window, aisle, and/or middle seats available. The “Row/Section 

Description” column in Table 4.5 shows how we grouped each of the rows into five main 

sections of the plane. Creating a set of variables to describe seat maps proved to be 

challenging due to two underlying factors: (1) planes fill up in a systematic way, i.e., 

customers prefer seats in the front of the plane; and, (2) when a section of a plane fills up, 

window and aisle seats always sell out before middle seats, i.e., customers prefer window 

and aisle seats.  

 In order to capture these two underlying factors, two seat availability variables are 

associated with each section of the plane.  For example, when the Regular Coach Front 

Seats Avail dummy variable is 1 (indicating that seats are available in this section) and 
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the Regular Coach Front W/A Avail dummy variable is 0 (indicating that no window or 

aisle seats are available in this section), this indicates that only middle seats are available 

in the Regular Coach Front of Plane section. When both of the indicator variables are 1, 

this indicates that at least one window or aisle seat in addition to at least one middle seat 

are available in that section. When both indicators are zero, this means no seats are 

available to reserve in that section. Note that not all dummy variables for each section of 

the plane are included in the model specification due to the systematic way in which 

planes fill up. First, there were only six observations in which all EMS seats were sold; 

these observations were excluded from the analysis, thus we do not include an indicator 

for the EMS middle seats. Also, there were no observations in which a plane had all 

middle seats in the back of the plane section 3 sold, so we do not include an indicator for 

the middle seats of this section. 

 Table 4.5 shows mean seat occupancy rates calculated from seat maps observed 

the day before the flight departs. A value of 0.84 means that a seat was reserved before 

departing for 84% of the planes observed. Table 4.5 confirms that passengers prefer seats 

at the front of the plane and, in general, prefer window and aisle seats over middle seats, 

although middle seats towards the front of the plane have occupancy rates similar to 

window or aisle seats in the back of the plane. Middle seats in the EMS section have the 

lowest occupancy rates on the plane.   
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Table 4.5: Mean Seat Occupancies the Day before Flight Departure  

Row 
Number 

Mean Seat Occupancies 
Row/Section 
Description A 

Window 
Seats 

B 
Middle 
Seats 

C  
Aisle 
Seats 

D  
Aisle 
Seats 

E 
Middle 
Seats  

F 
Window 

Seats 
1 Blocked Blocked Blocked Blocked Blocked Blocked Blocked Row 
2 0.72 0.43 0.79 0.77 0.35 0.63 

EMS Seats 3 0.56 0.30 0.72 0.68 0.27 0.50 
4 0.44 0.26 0.62 0.60 0.22 0.39 
5 0.39 0.21 0.55 0.55 0.19 0.35 
6 0.98 Blocked Blocked Blocked Blocked 0.98 

Regular Coach 
Front of Plane 

7 0.99 0.92 0.98 0.99 0.91 0.97 
8 0.99 0.89 0.99 0.98 0.87 0.98 
9 0.95 0.78 0.98 0.98 0.77 0.93 

10 0.25 0.13 0.43 0.43 0.09 0.19 EMS- Exit 
Row 11 0.26 0.10 0.44 0.43 0.09 0.24 

12 0.97 0.81 0.98 0.98 0.79 0.96 
Regular Coach 
Back of Plane 

Section 1 

13 0.96 0.75 0.97 0.97 0.72 0.95 
14 0.96 0.75 0.96 0.97 0.72 0.95 
15 0.95 0.71 0.96 0.97 0.69 0.94 
16 0.94 0.69 0.95 0.95 0.68 0.94 
17 0.94 0.64 0.94 0.93 0.64 0.92 

Regular Coach 
Back of Plane 

Section 2 

18 0.92 0.63 0.92 0.92 0.61 0.90 
19 0.90 0.59 0.91 0.90 0.55 0.88 
20 0.86 0.56 0.87 0.88 0.53 0.85 
21 0.83 0.51 0.86 0.84 0.51 0.83 
22 0.81 0.46 0.82 0.82 0.45 0.80 

Regular Coach 
Back of Plane 

Section 3 

23 0.79 0.43 0.79 0.78 0.40 0.75 
24 0.75 0.36 0.75 0.75 0.35 0.69 
25 0.58 0.10 0.63 Blocked Blocked Blocked 

 

 

4.5.2. Flight Price Variables 

We included two variables in the model that provides information as to whether the 

customer purchased a ticket for a nonstop flight that had the lowest fare available. These 

variables do not imply that all customers purchased the lowest fare. These variables do, 

however, provide information as to whether a customer purchased a fare on a flight when 
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a lower fare was available for the same departure date, but at a different departure time. 

Intuitively, we expect customers who purchase a fare on a flight that does not have the 

lowest fare to be more willing to also purchase seat upgrades. 

 A total of 10,699 itinerary screens (which provide a list of available flight choices 

and fares to customers) are observed in this dataset. Over all of the observed itinerary 

screens, tickets were booked for flights with fares ranging between $39 and $654 (with 

mean $157 and median $129). Out of these screens, 57% of the screens offer customers 

the same price for every flight, and 43% of the screens have at least one flight with a 

different price. LowestPrice is a dummy variable that indicates whether the booking was 

for the lowest priced flight[s] available on the itinerary screen.  

 For the screens that offer customers flights with different prices, the fare 

difference between the highest and lowest priced flights offered on the screen ranges 

from a difference of $4 to a difference of $417 (with mean difference of $40 and median 

difference of $15). DifferenceOverLowestPrice provides information on how much more 

expensive the booked flight was relative to the lowest priced flight available to purchase.  

For itinerary screens with varied flight prices, 59% of the observed bookings were made 

for the lowest priced flights. A priori, it is expected that customers who purchase tickets 

on higher priced flights are less price elastic (less price-sensitive) and may be more likely 

to purchase an EMS seat.  
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4.5.3. Group Booking Variables 

Dummy variables (NumberBookTogether1, NumberBookTogether2,…, NumberBook- 

Together5or6) were created to represent groups of people booking flights together. To do 

this, a few assumptions had to be made. If only one seat in a row was booked, then the 

booking is assumed to be made by an individual. If two seats were booked together in a 

row, then the booking is assumed to be a pair traveling together. The same logic is used 

to determine whether three, four, five, or six people booked together. We also assume 

that people traveling together do not book seats in different rows. Since there are six seats 

in a row, any groups larger than 6 would not be counted as the same group16.   

 An estimated 53% of the bookings are for individuals traveling alone, 32% of the 

bookings are made for two people traveling together, 9% of the bookings are made for 

three people together, 4% are for four people together, and the remaining 2% of bookings 

are made for groups of five or six people. 

 

4.6. Model Results 

Model coefficients, shown in Table 4.6 are intuitive and indicate that EMS seat purchases 

are influenced by seat fees and seat displays, along with flight and passenger 

characteristics.  

 

                                                 

 
 
 
 
 
16 Although these assumptions are not perfect, they are necessary because no customer information could 
be collected.  
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Table 4.6: Binary Logit Model Results 
  Coefficient z P>z1 

Price and Travel Time 
seatFeePerMile_DFD1-7 Interaction -32.5201 -10.24 0.000 
seatFeePerMile_DFD8-14 Interaction -38.0552 -12.37 0.000 
seatFeePerMile_DFD15-28 Interaction -44.7677 -11.25 0.000 
lowestPrice -0.3471 -5.45 0.000 
differenceOverLowestPrice 0.0011 1.91 0.056 
Seat Availability Variables  
Regular Coach Front W/A Avail 0.0972 2.30 0.021 
EMS W/A Seats Avail 0.3045 3.16 0.002 
Regular Coach  Back1 W/A Avail 0.2493 3.57 0.000 
Regular Coach  Back2 W/A Avail 0.1304 1.06 0.290 
Regular Coach  Back3 W/A Avail -0.4214 -6.03 0.000 
Regular Coach  Front Seats Avail -0.0609 -2.04 0.042 
Regular Coach  Back1 Seats Avail -0.1694 -3.04 0.002 
Regular Coach  Back2 Seats Avail -0.2027 -2.03 0.042 
Regular Coach Back23 W/A Interaction -0.4153 -3.30 0.001 
Regular Coach Back123 W/A Interaction -0.3001 -3.39 0.001 
Group Travel Variables (reference variable is NumberBookTogether5or6) 
NumberBookTogether1 (Individual) 0.6736 2.43 0.015 
NumberBookTogether2 (Pair) 0.9388 3.57 0.000 
NumberBookTogether3 0.7990 3.00 0.003 
NumberBookTogether4 0.6083 1.98 0.048 
Departure Day of Week Variables (reference variable is ddow7-Saturday Departure) 
ddow1 (Sunday Departure) 0.2619 3.16 0.002 
ddow2 (Monday Departure) 0.0806 1.86 0.063 
ddow3 (Tuesday Departure) 0.1902 2.74 0.006 
ddow4 (Wednesday Departure) 0.2095 2.65 0.008 
ddow5 (Thursday Departure) 0.2750 4.29 0.000 
ddow6 (Friday Departure) 0.2043 2.76 0.006 
Booking Day of Week Variables  
bdow1 (Book on Sunday) -0.1094 -2.01 0.045 
Number of Days from Flight Departure Dummies (reference variables are dfd19-dfd28)2 
dfd1 0.7607 6.19 0.000 
dfd2 0.3998 2.16 0.031 
dfd3 0.5096 3.56 0.000 
dfd4 0.4883 3.05 0.002 
dfd5 0.5387 3.64 0.000 
dfd6 0.2216 1.59 0.112 
dfd7 0.3108 2.05 0.041 
dfd8 0.4461 2.96 0.003 
dfd9 0.3991 2.59 0.010 
dfd10 0.1677 1.14 0.253 
dfd11 0.1640 1.15 0.249 
dfd12 0.3175 2.25 0.025 
Departure Time of Day (reference variable is evening-depart 5pm-8:59pm) 
earlymorning (depart 5am-7:59am) -0.1370 -1.01 0.311 
morning (depart 8am-11:59am) 0.2027 3.22 0.001 
afternoon (depart Noon-4:59pm) 0.2132 3.64 0.000 
lateevening (depart 9pm-11:59pm) -0.3478 -3.47 0.001 

1Reported z-statistics and p-values are based on clustering standard errors by market. 
2Note: Variables not reported include dfd13,…,dfd18, market dummies & constant term. LL= -27,779. 
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4.6.1. Seat Availabilities 

The coefficients associated with the seat availability dummy variables show that 

premium coach seat purchases are influenced by seat displays.  To visualize the influence 

of seat availabilities on premium seat purchases, we identified 13 representative seat map 

displays or “scenarios” from the data.  Because customers tend to make free seat 

reservations systematically (closer to the front of the plane is preferred over further back, 

and widow and aisle seats are preferred over middle seats), these 13 scenarios represent 

86% of the seat map displays viewed by customers at the time of booking.   

 Descriptive statistics for these 13 seat map displays are shown in Table 4.7, along 

with the partial utilities calculated from the seat availability variables from the binary 

logit results.  One interesting finding of note is that the utility associated with purchasing 

an EMS seat varies quite little among the first six scenarios, when there are still plenty of 

window and aisle seats available in the front and back of the plane (especially back 

sections 1 and 2). On the other hand, the utility of the upgrade increases dramatically 

after there are no window and aisle seats left (Scenarios 10-13), and large increases are 

observed with every block of middle seats that fills. Customers who book 1 to 3 days 

from departure (DFD) are two times more likely to purchase an EMS seat when faced 

with a full plane (Scenario 13) vs. an empty plane (Scenario 1) (i.e., 37.9% of bookings 

made 1 to 3 days from departure include an EMS seat for Scenario 13 vs. 18.7% for 

Scenario 1). Comparing seat availabilities scenarios for each DFD category indicates that 

customers are between 2 and 3.3 times more likely to purchase EMS seats when faced 

with reserving a seat on a full plane versus an empty plane. These results suggest that the 
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ability of JetBlue to collect seat reservation fees is strongly tied to seat map displays and 

corresponding load factors.   

 

4.6.2. Premium Seat Fees 

Table 4.7 also allows us to investigate price sensitivities of bookings made closer to 

departure while also controlling for load factors at the time of booking. For example, 

those customers who book a flight on an empty plane (Scenario 1) between 1 and 3 DFD 

are 1.7 times more likely to purchase an EMS seat than those customers who book further 

in advance (DFD 22 to 28) on an empty plane (18.7% vs. 10.8% of observed bookings 

include an EMS purchase). Comparing bookings made closer to departure (DFD 1 to 3) 

to bookings made further in advance (DFD 22 to 28) for each scenario indicates that 

customers are between 1.1 and 2.1 times more likely to purchase EMS seats when they 

book closer to departure. This is also reflected in the coefficients associated with the 

premium seat fees, i.e., the seatFeePerMile for purchases made 15-28 days from 

departure is more negative (-44.77) than the coefficients associated with purchases made 

8-14 days from departure (-38.05) and 1-7 days from departure (-32.5). These 

coefficients show that customers who purchase closer to flight departure are less price-

sensitive. This suggests that airlines may be able to dynamically price seat fees and 

charge higher seat fees closer to the departure date.  



 

Table 4.7: Percent of EMS Bookings by Seat Availability Scenarios and Days from Flight Departure (DFD) 

Scenario 
Number 

Are Window and/or Aisle Seats 
Available? 

Are Middle1 Seats 
Available? 

Percent EMS Bookings by DFD 
Partial
Utility 

EMS Regular Coach Sections DFD  
1 to 3 

DFD  
4 to 7 

DFD 
 8 to 14 

DFD  
15 to 21 

DFD  
22 to 28 

Over all 
DFD Front Back1 Back2 Back3 Front Back1 Back2 

Scenario with regular coach window and/or aisle seats available in Front, Back 1, Back 2, Back 3 

1 Yes Yes Yes Yes Yes Yes Yes Yes 18.7% 16.8% 13.2% 13.1% 10.8% 12.7% -0.788 
Scenarios with regular coach window and/or aisle seats available only in Back 1, Back 2, Back 3 

2 Yes No Yes Yes Yes Yes Yes Yes 21.7% 18.7% 13.6% 12.0% 11.9% 13.7% -0.886 
3 Yes No Yes Yes Yes No Yes Yes 18.5% 19.0% 16.3% 12.3% 14.7% 15.1% -0.825 

Scenarios with regular coach window and/or aisle seats available only in Back 2, Back 3 

4 Yes No No Yes Yes Yes Yes Yes 23.2% 19.3% 15.7% 14.9% 12.6% 16.4% -0.835 
5 Yes No No Yes Yes No Yes Yes 24.9% 17.5% 16.6% 15.8% 11.5% 16.7% -0.774 
6 Yes No No Yes Yes No No Yes 30.1% 22.3% 18.9% 18.6% 22.3% 21.1% -0.604 

Scenarios with regular coach window and/or aisle seats available only in Back 3 

7 Yes No No No Yes Yes Yes Yes 29.8% 26.4% 21.9% 20.8% 17.6% 23.5% -0.550 
8 Yes No No No Yes No Yes Yes 29.3% 24.2% 24.7% 20.0% 20.1% 24.3% -0.489 
9 Yes No No No Yes No No Yes 37.3% 35.0% 22.3% 32.4% 20.0% 31.1% -0.320 

Scenarios with no regular coach window and/or aisle seats available in any section of the plane 

10 Yes No No No No Yes Yes Yes 38.2% 41.5% 40.7% 30.9% 31.3% 38.4% -0.129 
11 Yes No No No No No Yes Yes 40.3% 34.0% 35.0% 26.8% 32.1% 35.1% -0.068 
12 Yes No No No No No No Yes 40.8% 44.1% 34.0% 32.6% 36.5% 38.9% 0.102 
13 Yes No No No No No No No 37.9% 47.7% 42.3% 43.3% 26.3% 42.2% 0.304 

Note: EMS = Even More™ Space. See Table 4.5 for details about the row numbers that correspond to each section.   
1Middle seat availabilities for EMS and regular coach back section 3 are excluded because there are no observations in the data without available middle seats in these sections. 
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4.6.3. Nonstop Flight Characteristics 

EMS seat purchases are influenced by many itinerary characteristics including the price 

that paid for the flight, departure day of week and time of day, and market effects. 

 The model coefficients for lowestPrice and differenceOverLowestPrice show that 

customers who purchased a ticket on a flight with a higher fare when a lower fare was 

available on a flight departing at a different time of the day are more likely to purchase an 

EMS seat. Moreover, the higher the fare difference that customers paid over the lowest 

priced flight, the more likely they are to purchase a seat. This corroborates our intuition 

that customers who purchase a fare on a flight that does not have the lowest fare are less 

price-sensitive. 

 Flight day of week and time of day effects also impact EMS seat purchases. 

Customers are more likely to purchase EMS seats for Sunday and Thursday departures, 

which are days in which business customers are likely to travel. With respect to departure 

time, customers who book flights with departure times between 8:00 am and 4:59 pm are 

more likely to purchase EMS seats than other flight times. 

 Market level fixed effects (dummy variables) are included in the model and are 

significant, but are not included in the table for space purposes. Coefficients on the 

markets showed that two markets were especially different than the other markets. For 

the two markets with destinations in Puerto Rico, customers were much less likely to 

purchase EMS seats. Seat fees are already priced particularly low in these markets. 

Flights from JFK to Rafael Hernández Airport (BQN) in Aguadilla, Puerto Rico have an 

EMS seat fee of $30, which is 1.9 cents per mile and is the lowest seat fee per mile out of 

all the markets collected. Flights from Orlando International Airport (MCO) in Florida to 
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BQN have an EMS seat fee of $25, which is 2.2 cents per mile and is the third lowest seat 

fee per mile out of all the markets collected. The low price of the seat fees in these 

markets, coupled with model results indicating that customers are far less likely to 

purchase EMS seats in these markets shows that customers flying to Puerto Rico are 

highly price-sensitive. The demographics of New York and Orlando also suggest that 

these flights may have a larger percentage of customers who are visiting friends and 

family and neither traveling on business nor splurging on a vacation.  

 

4.6.4. Passenger Characteristics 

EMS seat purchases are influenced by several passenger characteristics including group 

bookings, booking day of week, and how far in advance of departure the customer books 

a flight.  

 The group booking variables indicate that two people traveling together are more 

likely to purchase EMS seats than individuals and larger groups. Also, a group of three 

people booking together are more likely to purchase EMS seats than individuals and 

larger groups. The results show that groups of four or more are the least likely to 

purchase EMS seats, which seems to reflect price sensitivity of families traveling 

together. A family of four who purchases EMS seats could expect to pay an extra $60 to 

$260 one-way, or $120 to $520 round-trip, for the family to sit in an EMS section. These 

prices may be too high for many families who are already paying for multiple plane 

tickets. 

 With respect to the booking day of week, customers who book on Sunday are less 

likely to purchase EMS seats; this is the only significant booking day of week variable.
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4.6.5. Prediction Accuracy 

The results related to days from departure, price sensitivities, and seat map displays may 

be confounded in the sense that the least desirable seat maps occur closer to flight 

departure when we expect price-insensitive business travelers to book.  This suggests that 

the estimated binary logit model could really be capturing different passenger mixes 

across the booking horizon, and not the effects of seat map displays. To test the 

robustness of results, we compared predicted EMS seat purchase percentages across the 

booking horizon to observed predicted EMS seat purchase percentages, shown in Table 

4.8. In general, the model performs well, particularly at the aggregate level over all days 

from departure and over all scenarios. For example, the predicted percentage of EMS seat 

purchases over all DFD for Scenario 1 has an error of 0.23. Table 4.7 showed that 12.7% 

of bookings were observed to include an EMS seat purchase. Thus, the model predicts 

that 12.93% of bookings include an EMS seat purchase. 



 

Table 4.8: Prediction Accuracy of EMS Seat Purchases for Seat Availability Scenarios and Days from Flight Departure (DFD)   

Scenario 
Number1 

Difference Between Predicted and Observed Percent of EMS Purchases  
(Number of Bookings Made Under Each Scenario) for: 

DFD 1 to 3 DFD 4 to 7 DFD 8 to 14 DFD 15 to 21 DFD 22 to 28 Over all DFD 

1  1.54 (386)  0.15 (871)  1.15 (2,457) -1.02 (3,614)  0.63 (4,748)  0.23 (12,076) 
2 -0.20 (503) -1.63 (921)  0.66 (2,309)  0.26 (2,325)  0.05 (2,372)  0.08 (8,430) 
3 -0.29 (173) -1.76 (305) -1.33 (882)  0.49 (927) -2.59 (832) -1.11 (3,119) 
4 -1.25 (715)  0.29 (1,414)  0.84 (2,757) -0.01 (1,967)  1.13 (1,102)  0.39 (7,955) 
5 -3.39 (394)  0.91 (750)  0.55 (1,637) -0.46 (1,009)  2.80 (513)  0.29 (4,303) 
6 -8.49 (73)  0.49 (148)  0.33 (254) -0.66 (145) -6.04 (94) -1.58 (714) 
7 -1.14 (449)  0.41 (656)  0.63 (1,116)  0.33 (475)  0.79 (284)  0.28 (2,980) 
8 -0.83 (501)  1.59 (920) -1.78 (965)  0.23 (444) -1.47 (189) -0.28 (3,019) 
9 -6.10 (212) -6.77 (223)  4.11 (233) -10.31 (68)  0.60 (20) -3.35 (756) 

10  1.76 (314) -3.83 (489) -8.12 (548) -1.26 (262) -5.8 0(96) -3.90 (1,709) 
11  1.17 (760)  3.28 (995) -1.95 (882)  1.95 (306) -7.56 (81)  0.80 (3,024) 
12  3.94 (610) -0.87 (576)  2.38 (579)  1.32 (175) -2.80 (63)  1.67 (2,003) 
13  10.85 (264) -0.74 (241) -0.53 (241) -2.02 (67)  15.39 (19)  3.26 (832) 

Over all 
Scenarios:  0.00 (7,118)  0.00 (10,414)  0.00 (17,316) -0.17 (13,088)  0.20 (11,306)  0.30 (59,242) 

1See Table 4.5 for the seat availabilities of each scenario and observed probabilities 
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4.7. Policy Analysis  

In this section, we investigate revenue potentials associated with optimizing the current 

static seat fee structure, dynamically pricing seat fees, and by changing seat displays by 

showing seats as being unavailable to customers.  The latter would occur if an airline 

decided to reserve additional seats for its premier customers. 

 

4.7.1. Optimizing Static Seat Fees 

We can use the results from our binary logit model to determine optimal seat fees by 

calculating the expected revenue for each customer. This is found by multiplying the 

upgrade fee by the probability that a customer will actually purchase an upgrade.  

Although customers’ price sensitivities are seen to vary as a function of days from 

departure, most airlines currently do not have the technological capability to charge 

different fees across the booking horizon.  Thus, it is interesting to examine whether the 

static seat fees currently charged by JetBlue are optimal.  

 The optimal static seat fees derived from our model are shown in Table 4.9.  With 

the exception of two markets (JFKORD and MCOAUS), JetBlue’s seat fees are currently 

underpriced, particularly in the east coast to west coast markets.  Charging optimal static 

fees would increase expected revenues by 8.0% (from $476,245 to $514,530) for the 

observed data. 

 To test the sensitivity of the seat fee optimization results, we generated a 

distribution for the revenue forecast by using the variance-covariance matrix of parameter 

estimates from the binary logit model. The estimated seat fee revenue that the optimal 

seat fees would generate at the 25th percentile of the distribution is $509,740 and at the 
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75th percentile is $519,145, which represents a 7.0% and 9.0% revenue increase, 

respectively. 

 

Table 4.9: Optimal Seat Fees by Market 

Market 
Optimal Dynamic Seat Fees Optimal 

Static Seat 
Fee 

Current 
Seat 
Fee 

Type 
Haul1 DFD  

1 to 7 
DFD  

8 to 14 
DFD  

15 to 28 
JFKBQN $52 $44 $36 $44 $30 E-PR 
MCOBQN $37 $31 $26 $33 $25 E-PR 
BOSIAD $20 $16 $13 $17 $15 E-E 
BOSMCO $45 $37 $30 $37 $30 E-E 
BUFMCO $39 $32 $26 $34 $25 E-E 
EWRMCO $38 $30 $24 $31 $19 E-E 
IADMCO $35 $28 $22 $38 $25 E-E 
JFKFLL $44 $35 $28 $38 $35 E-E 
JFKPBI $46 $37 $30 $37 $35 E-E 
LGAFLL $47 $37 $30 $40 $35 E-E 
SYRMCO $43 $35 $28 $34 $25 E-E 
BOSDEN $69 $57 $45 $57 $40 E-MW 
JFKORD $32 $25 $20 $25 $30 E-MW 
MCOAUS $40 $32 $26 $33 $35 E-MW 
BOSLAX $104 $82 $67 $85 $50 E-W 
BOSSFO $116 $95 $76 $96 $55 E-W 
FLLSFO $93 $76 $63 $80 $50 E-W 
JFKLAS $94 $76 $62 $79 $50 E-W 
JFKLAX $106 $86 $68 $87 $50 E-W 
JFKOAK $110 $90 $71 $89 $60 E-W 
JFKPDX $93 $77 $62 $76 $50 E-W 
JFKSFO $116 $92 $76 $99 $60 E-W 

1E-PR = East coast to Puerto Rico flights, E-E = East coast to east coast flights, E-MW = East coast to Midwest flights,     
E-W = East coast to west coast flights (JFKLAS is included due to length of haul). 
 

4.7.2. Dynamically Pricing Seat Fees 

Since the binary logit model results indicate that customers who book tickets closer to the 

date of flight departure are less price sensitive, we examine a pricing strategy which sets 

fees by route and three DFD categories: 1-7 days, 8-14 days, and 15 or more days. Within 
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each route and DFD category, prices are set to maximize expected revenue based on the 

actual observations in the data. The optimal dynamic seat fees for each market are shown 

in Table 4.9. 

 The seat fees calculated using this dynamic pricing approach appear reasonable. 

Optimal seat fees for 15 days from departure and up are similar to the current seat fees 

that JetBlue is charging in each market. However, our results show that there is potential 

to charge higher prices closer to departure. Optimal dynamic seat fees would increase 

expected seat fee revenues by 10.2% (from $476,245 to $524,875) for the observed data.  

Compared to the baseline that optimizes static seat fees, this represents an additional 

2.0% increase in expected seat fee revenues. A sensitivity analysis of these dynamic fees 

shows that the estimated seat fee revenue that the optimal seat fees would generate at the 

25th percentile of the distribution is $518,510 and at the 75th percentile is $531,075, 

which represents an 8.9% and 11.5% revenue increase, respectively. Compared to the 

baseline that optimizes static seat fees, optimal dynamic seat fees represent an additional 

0.8% to 3.2% increase in expected seat fee revenues. 

 Our results suggest that future increases in seat fees are likely; however the 

revenue gains associated with dynamically pricing fees across the horizon are not at a 

level that will likely justify technological investments for an airline the size of JetBlue. 

The expected revenue gains from dynamic pricing are only on the order of about $1-4 

million, set against a cost of upgrading reservations and data systems that may well 

exceed that. Larger airlines, on the other hand, whose seat fee revenues are several times 

larger than JetBlue’s, may find it profitable to follow United’s lead in dynamic pricing of 

premium seats. 

123 
 



 

4.7.3. Influence of Seat Map Displays that Block Seats 

We can also use our model to examine the revenue potential of strategically blocking 

certain regular coach seats from reservations during the booking process, effectively 

making the plane appear more fully reserved than it is at the time of booking. We apply 

the same simulation technique as described above for determining optimal static seat 

fees, but artificially close certain seating positions for all new reservations. When all 

regular coach seats in the front of the plane (rows 6-9) and back of the plane section 1 

(rows 12-16) are indicated as “unavailable” for every traveler making a new reservation, 

using the actual seat fees offered by JetBlue, the model indicates that the interquartile 

range of expected revenue is $523,250 to $550,290, with a mean of $537,350 (which 

represents a 9.9% to 15.5% revenue increase, with a mean of 12.8%). In other words, if 

JetBlue were to leave their seat fees unchanged and instead blocked certain rows of seats 

for premier customers, they could potentially increase revenues by 9.9% to 15.5%. 

 Of course, implementing such a reservation system is a complex change, and the 

effects would reach far beyond the seat fee revenues. Once the rear sections of the plane 

filled, either regular coach seats in these sections (front of the plane and back of the plane 

section 1) would need to be released (improving free seat availability in the late DFD 

times when willingness to pay is higher) or JetBlue would need to abandon its policy of 

allowing all travelers to choose seats at the time of booking (altering an important 

branding feature and potentially negatively impacting other revenues). Moreover, if 

passengers learn to expect that those seats are vacant and/or will be filled before 

departure, some of them (especially frequent fliers, who may have a higher willingness to 

pay for upgrades but also a larger expectation of receiving access to otherwise blocked 
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seats) may shop for EMS upgrades more strategically, with results that cannot be 

predicted using the current data and model. However, the results suggest that, with or 

without other pricing changes, by blocking some seats from the reservation process it 

may be possible to nudge some customers into purchasing EMS seats when they would 

not otherwise do so.  

 

4.8. Discussion 

The results of this study are based on a subset of JetBlue markets and equipment types.  

This prevents us from extrapolating our results to different markets, different equipment 

types, and different airlines.  However, this does not prevent us from quantifying the 

relative importance of two questions that are at the core of tensions among customers, 

regulatory agencies, and airlines: customers and regulatory agencies are focusing on the 

importance of fee transparency and fairness, but airlines want to add complexity to 

further differentiate fees across customer groups (e.g., by blocking seats for preferred 

customers) so as to capture more of the consumer surplus. 

 The results from our study suggest that in the future, we can expect to see further 

increases in premium seat fees as airlines begin to better understand customers’ 

willingness to pay for seat products. However, changing an airline’s technological 

infrastructure to facilitate dynamic pricing imposes relatively high fixed costs. These 

costs are probably reasonable and recoupable for the mega-carriers emerging from the 

past few years of airline mergers, but we do not anticipate seeing dynamic pricing of 

ancillary fees on existing smaller carriers in the near future.  

125 
 



 

 Further, it is interesting to note that blocking seats (and leaving current seat fees 

unchanged) has as much revenue potential as optimizing current static fees. That is, by 

reducing the number of “good” seats that are available to reserve for free to all 

passengers, it is possible to increase seat fee revenues overall. Some airlines already 

implement some form of this system, such as British Airways, which limits all seat 

reservations before check-in to premier and fee-paying customers. This underscores the 

importance of ensuring customers are not inadvertently misled into purchasing premium 

seats by seat map displays that block seats for premier customers. 

 At the industry level, our study provides some insights into potential strategic 

directions of airlines. As airlines make plans to acquire and configure new aircraft, they 

must make decisions about cabin layout and amenities, and ideally these decisions should 

seek to provide the best return on investment over the long term. Although there have 

been some limited stated-preference studies into customer behavior (Weinstein and 

Keller, 2012), it is unclear what customers really value in a premium product. Further, 

airlines currently use two basic approaches to designing a premium product. They can 

create a product that is appealing to customers based on the attributes that it offers, or 

they can make the basic coach experience so unpleasant that customers will be willing to 

pay to escape to the upgraded offering. From a customer’s perspective, it is obvious 

which the preferred approach is, but when considered simply as a business decision taken 

by an airline, it is less clear. There is an obvious tradeoff between the revenue from seats 

that provide extra legroom and the number of seats that can be put on a plane. As noted in 

our findings, there are many price sensitive customers that are not willing to pay more for 

extra legroom, especially in markets dominated by customers who are visiting friends and 
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relatives (e.g., Puerto Rico) and for vacation markets (e.g., Orlando), and the airline 

might be better off with more tickets/seats to sell. This may lead airlines to consider two 

different configurations with the same fleet type, one with more premium seats and one 

with more coach seats.  

 The industry is still trying to figure out the best model for seat upgrades, and the 

landscape continues to change. For example, Spirit makes no claim to have a more 

comfortable experience then their competitors, and they do not have a premium product, 

yet their business model is viable. That could, and likely would, change if industry 

capacity increases, but for now their business model is paying off. Virgin America has 

the opposite model.  They have first class seats that are quite appealing, but they have not 

been able to get a price premium that justifies the opportunity cost and are currently in 

dire financial straits. Looking ahead, we can expect to see premium seat fee models 

evolve and potentially change as a function of industry load factors. 

 

4.9. Conclusion 

This paper has provided one of the first studies of airline customers’ premium coach seat 

purchasing behavior. This is also the first study we are aware of that uses an online 

database of airline fares and seat maps. All prior studies using online airline data have 

been based solely on fare information and have excluded seat maps.   

 Our study provides several new behavioral insights.  As planes fill up, customers 

are more likely to purchase a premium coach seat, regardless of how far in advance they 

purchase a ticket.  Results indicate that JetBlue (and other airlines) can dynamically price 

seat fees as a function of days from departure and/or seat map displays. The revenue 

127 
 



 

gains associated with dynamically pricing seat fees are expected to be modest, and likely 

insufficient for smaller airlines to justify the large fixed costs of technology investments 

required to implement dynamic seat fees.  

 The results of this study also suggest that the willingness of customers to pay seat 

fees is strongly tied to load factors (as revealed through seat maps). This has several 

implications. First, concerns expressed by customers and government officials about the 

importance of clearly communicating airlines’ seat policies appear valid. It is important 

to ensure that customers are not being misled into making premium seat fee purchases by 

the information displayed on seat maps. Second, the U.S. airline industry is currently 

going through a series of mergers and acquisitions, and has seen a reduction in overall 

domestic capacity, which has led to record-high load factors.  In an environment in which 

load factors are high, the airlines’ ability to generate revenues from seat fees is strong, 

and several industry pricing models related to seat fees are viable.  However, if load 

factors decrease in the future, we would expect that the incremental revenues generated 

from seat fee reservations would also decrease. 

 There are several extensions of our work that could be addressed by using stated 

preference surveys. Currently, it is unclear what specific attributes of premium coach 

seats are valued by customers, and how these valuations may differ across customer 

segments.  For example, do customers purchasing JetBlue’s premium coach seats value 

extra legroom?  Do they value the ability to board first and store luggage in overhead 

bins?  Do they value the ability to deplane first and have more time to make connecting 

flights?  Do they value having an empty middle seat next to them?  Determining the value 

of each of these components will help airlines better design products and bundles that 
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provide the most value for customers. It will also help airlines determine whether they 

should invest in adding sections in coach that offer extra legroom, or simply sell existing 

coach seats that provide early boarding and alighting privileges.  This is a particularly 

important decision for carriers, as removing planes from service to remove row(s) of 

seats to add extra legroom is costly, particularly when planes are flying near record-high 

load factor levels.  The revenues generated by selling extra legroom seats needs to 

outweigh any revenues lost by removing seats from the aircraft.  As suggested by our 

analysis, carriers should consider a range of load factors in any break-even analysis 

related to adding extra legroom seats to coach.  
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CHAPTER 5: REVIEW OF PRICE ENDOGENEITY 

 

5.1. Abstract 

Price endogeneity occurs when correlation exists between price and the error term (or 

unobserved factors) in a model. In demand models, prices are generally considered to be 

endogenous because prices are strongly influenced by demand and demand is, in turn, 

strongly influenced by prices. Price endogeneity is well documented in economics 

literature and is known to cause problems when analyzing data, as endogeneity can lead 

to unrealistic and misleading model coefficient estimates. Although price endogeneity 

has been shown to be prevalent in many industries, few studies of air travel demand have 

explored endogenous airline prices. In this chapter, we explain the causes of endogeneity 

and review literature that has corrected for price endogeneity, focusing on empirical 

studies that have demonstrated endogeneity bias in coefficient estimates. Instrumental 

variable methods, which are used to correct for endogeneity, are discussed. Also, several 

different types of instruments are reviewed, and studies that have utilized each type of 

instrument are cited as examples. Finally, tests for endogenous regressors, valid 

instruments, and weak instruments are discussed, and corresponding Stata® codes are 

provided.    
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5.2. Background 

An explanatory variable is called endogenous when there is correlation between that 

variable and the error term (or unobserved factors) in a model. In Ordinary Least Squares 

(OLS) regression models, this correlation means that the conditional expectation of the 

error term on the explanatory variable will not be equal to zero, which violates a main 

assumption required to ensure estimator consistency (Greene, 2003). Similarly, in 

discrete choice models, this correlation will lead to inconsistent estimators. Thus, models 

that are estimated without correcting for endogeneity will lead to inconsistent parameter 

estimates where some level of unobserved bias will exist.   

 In this chapter, we explain the causes of endogeneity and review some of the 

literature that has corrected for price endogeneity, focusing on empirical studies that have 

demonstrated endogeneity bias in coefficient estimates. Instrumental variable methods, 

which are used to correct for endogeneity, are discussed and different types of 

instruments are reviewed. Finally, tests for endogenous regressors, valid instruments, and 

weak instruments are discussed, and corresponding Stata® codes are provided.  

 This chapter provides an overview of the main concerns related to endogeneity 

and provides a literature review of some of the most cited papers. Where appropriate, 

applications in travel demand are discussed. Readers are referred to books by Greene 

(2003) and Train (2009) and a dissertation by Guevara-Cue (2010) for excellent 

comprehensive reviews of endogeneity.    
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5.2.1. Causes of Endogeneity 

 There are several known causes of endogeneity. One of the main causes of price 

endogeneity is referred to as simultaneity of supply and demand, which occurs when 

price influences demand, and demand influences price. As an example, airline revenue 

management strategies change prices in response to demand (ticket purchases). Also, 

consumers are expected to change their purchasing behavior in response to price. Thus, 

airfares are expected to be endogenous.    

 Omitted variables can also cause endogeneity when one or more relevant 

explanatory variables have been omitted from the model. Endogeneity occurs when the 

omitted variable (often unobserved attributes of the product) affects demand and is also 

correlated with price. Theoretically, airline demand models could suffer from omitted 

variable bias if there are unobserved attributes of flights that influence customer choice 

and are also correlated with price.  For example, variables that are not often captured in 

discrete choice models are variables related to entertainment (such as free Wi-Fi on some 

flights or equipment types). If free Wi-Fi influences customer choice of a flight and is 

also correlated with the price of a flight, then Wi-Fi would be an example of an omitted 

variable that causes endogeneity. 

 Endogeneity can also occur as a result of measurement error when an independent 

variable is not measured perfectly. This could occur in airline demand models if we do 

not know the actual price a customer paid for a ticket. 
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5.2.2. Endogeneity Bias 

When models are estimated without correcting for price endogeneity, parameter estimates 

are not consistently estimated, i.e., the model suffers from endogeneity bias. The 

endogeneity bias will be present in the coefficient of the endogenous variable, but is often 

present in the coefficients of the exogenous variables as well. When variable coefficients 

are biased, other common measures calculated from the coefficients, such as price 

elasticities and value-of-time (VOT) estimates, will also be biased.  

 To understand the direction of the bias better, it is helpful to think through the 

problem. In supply and demand models, when demand for a product is high firms often 

increase prices, and customers are willing to pay the higher prices to have access to the 

inventory. As a result, traditional modeling techniques will underestimate the influence of 

price on demand. In fact, sometimes traditional modeling techniques may even estimate 

that price positively impacts demand, which is counterintuitive. 

 

5.2.2.1. Evidence of Endogeneity Bias in Air Travel Demand Literature 

Within the airline literature, few studies have corrected for price endogeneity in models 

of air travel demand. Hsiao (2008) estimates discrete choice models of aggregate 

quarterly air passenger demand using aggregate quarterly data from DB1B and T100.  

Hsiao finds that without correcting for endogeneity, fare coefficients are underestimated, 

VOT estimates are greatly overestimated, and price elasticities are counterintuitive. For 
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example, in three uncorrected models, VOT is estimated to be between $614 and $726 

per hour (between 39 and 46 times larger than the median wage rate of 2004)17. After 

correcting for endogeneity, VOT is estimated to be $16.7 and $21.3 per hour, which is 

much more reasonable. Additionally, Hsiao shows that in models which did not account 

for endogeneity, mean fare elasticity estimates of market demand were inelastic (between 

-0.154 and -0.365), whereas in models that corrected for endogeneity the mean fare 

elasticity estimates of market demand were elastic (between -1.052 and -2.662). 

  In a more recent study, Granados, Gupta and Kauffman (2012) estimate log-

linear regression models and estimate price elasticity of demand for air travel booked 

through online and offline channels. The authors use a dataset of airline bookings sold by 

travel agencies through global distribution systems (GDSs)18. In a model estimated on the 

whole dataset, price elasticity of demand is estimated to be inelastic (-0.14) in an OLS 

regression model that did not correct for endogeneity. However, in a model that corrected 

for endogeneity, fare elasticity of demand is estimated to be approximately unit elastic 

(-1.03).  

 Berry and Jia (2009) estimate the impact of demand and supply changes on airline 

profitability using a random-coefficient discrete choice model of demand and aggregate 

quarterly data from DB1B. Gayle (2004) uses aggregate quarterly data from DB1B to 

                                                 

 
 
 
 
 
17 Hsiao (2008) notes that these percentages are based on the U.S. median wage rate of 2004, which was 
$15.96 per hour (Bureau of Labor Statistics, 2008). 
18 GDSs include ticket sales made via online and offline channels through travel agencies but exclude 
airline direct sales. 
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investigate air passenger itinerary choice behavior. Both studies correct for price 

endogeneity but do not report the change in parameter estimates for uncorrected models.    

 

5.2.2.2. Evidence of Endogeneity Bias in Other Travel Demand Literature 

In an empirical study of demand for high speed rail travel (Pekgün, Griffin and 

Keskinocak, 2013), price elasticity estimates across several models of different passenger 

segments are consistently shown to be biased towards zero when endogeneity is 

unaccounted for. For example, in a model of advanced purchasers (booked at least 21 

days in advance) who booked economy class tickets with a Saturday night stay, price 

elasticities of demand are estimated to be -0.407 in an OLS model which did not correct 

for endogeneity, and -1.972 in a two-stage least squares (2SLS) model which corrected 

for endogeneity.  

 

5.2.2.3. Evidence of Endogeneity Bias in Other Industry Demand Literature 

Although there are few studies within the airline industry that have corrected for price 

endogeneity, there are many empirical studies of demand that have corrected for price 

endogeneity using data from other industries. Most studies have shown that price 

coefficients are underestimated if endogeneity is not corrected. Examples of recent 

empirical studies that have demonstrated that price coefficients are underestimated if 

endogeneity is not corrected include the following: household choice of television 

reception options (Goolsbee and Petrin, 2004; Petrin and Train, 2010), household choice 

of residential location (Guevara and Ben-Akiva, 2006; Guevara-Cue, 2010), choice of 

yogurt and ketchup brands (Villas-Boas and Winer, 1999), consumer-level choice of and 
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aggregate product demand for the make and model of a new vehicle (Berry, Levinsohn 

and Pakes, 1995, 2004; Train and Winston, 2007), and brand-level demand for 

hypertension drugs in the U.S. (Branstetter, Chatterjee and Higgins, 2011). 

 

5.3. Methods to Correct for Price Endogeneity 

Instrumental variable (IV) methods can be applied to models to take into account 

endogeneity, which allows consistent parameter estimation when endogenous 

explanatory variables are present. The modeling methods differ depending on whether 

models being estimated are linear or non-linear.  

 For linear models, such as least squares regression, IV methods have been used 

for many years, with the first application dating back to 1928 (see Stock and Trebbi, 2003 

for a history of the first applications in IV methods). Most statistical programs provide 

functions which easily implement IV methods, such as two-stage least squares (2SLS) 

regression.   

 However, discrete choice models are non-linear and other methods must be used 

to account for endogeneity. Dealing with endogeneity in discrete choice models is a 

newer problem and most statistical programs do not have built-in functions to do this. At 

a conference workshop, Bhat (2003) identifies the endogeneity problem as an emerging 

methodological issue in discrete choice models.   

 There are several approaches for dealing with endogeneity in discrete choice 

models. Readers are referred to Train (2009) for a more detailed description of these 

methods, along with derivations, advantages, and disadvantages of each method. One 

approach, which many researchers refer to as the BLP approach (developed in Berry, 
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1994; Berry, Levinsohn and Pakes, 1995) has been used in several studies. However, the 

BLP approach is often not appropriate when observed shares for some products in some 

markets are zero or nearly zero (Petrin and Train, 2010; Train, 2009). When modeling 

daily demand for flights, we observe days when no tickets were sold. Thus, the BLP 

approach may not be appropriate for modeling daily flight-level demand.  

 Another approach is called the control function approach (Blundell and Powell, 

2004; Guevara and Ben-Akiva, 2009; Petrin and Train, 2010; Villas-Boas and Winer, 

1999), which can be used for datasets with observations of zero demand. Essentially, a 

regression on price is estimated using a set of instruments, and then the residuals are used 

in the discrete choice model as a new variable. This approach is easy to implement and is 

appropriate for modeling daily flight-level demand. 

  

5.4. The Search for Instrumental Variables 

The search for and identification of a valid set of instruments is not easy and is often 

controversial. In general, most researchers agree that any set of instruments that satisfy 

the following two conditions will generate consistent estimates of the parameters, subject 

to the model being correctly specified (Rivers and Vuong, 1988; Villas-Boas and Winer, 

1999): 

  1.) Instruments should be correlated with the endogenous variable (price), and  

 2.) Instruments should be independent of the error term in the model.  

Therefore, we need to find instruments that are correlated with price but are not 

correlated with the error term. The error term in the choice of an itinerary represents all 

variables that influence customer choice of a particular flight but are not included in the 
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model, which means that we need instruments that are correlated with price but do not 

influence customer choice of a flight (or customer purchase). 

 There are several types of instrumental variables that have been used in the 

literature. In the following sections, we describe these different types of instruments. 

Table 5.1 summarizes each of the types of instruments that will be discussed in the next 

sections and offers a few possible instruments that have been used (or could be used) in 

air travel demand models. 

 

5.4.1. Cost-Shifting Variables as Instruments 

Variables that shift cost and are uncorrelated with demand shocks are common 

instruments that have been used in many applications of aggregate demand. For example, 

within the airline industry, Hsiao (2008) used route distance multiplied by unit jet fuel 

cost as instruments in discrete choice models of aggregate quarterly air passenger 

demand. Both route distance and unit jet fuel cost can be thought of as cost shifters 

because they are expected to impact the price of tickets. Theoretically, these make sense 

to use as instruments if one believes that route distance and unit jet fuel cost are 

correlated with ticket prices, but not with customer decisions to travel (uncorrelated with 

demand). 

 Hausman (1996) estimates empirical models of brand choice in the ready-to-eat 

cereal industry. When aggregate demand for cereal is estimated, he uses factors which 

shift the cost of cereal (such as ingredients, packaging, and labor) as instruments. 

However, in his more disaggregate model of brand choice (such as Cheerios) he notes 

that the usual strategy of using cost shifters as instruments does not work because “there 
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may be an insufficient number of input prices, or they may not be reported with high 

enough frequency.” This is the same problem that we expect to encounter in estimating 

disaggregate models of flight-level demand (which will be further discussed in Chapter 

6). Cost-shifting instruments (such as route distance or unit jet fuel cost) would be unable 

to capture day-to-day fluctuations in price, which are more likely to be driven by revenue 

management practices and competitor price matching.  

 The first row of Table 5.1 summarizes these instruments, and the remaining rows 

of this table will be described in the following sections. 

 

5.4.2. Hausman-Type Price Instruments 

Hausman (1996), discussed in the previous section, estimates disaggregate empirical 

models of brand choice in the ready-to-eat cereal industry where cost-side instruments are 

not appropriate. Hausman’s solution for finding instruments is to exploit the panel 

structure of the data, in which quantities and prices are observed in several different 

cities. In this context, the price instrument for the city of interest is the prices of the same 

brand in other cities (many researchers now refer to this type of instrument as “Hausman-

type price instruments”). The basic idea is that after eliminating city-specific and brand-

specific effects (by including fixed-effects in the model), the price of a brand in city j will 

be correlated with the prices of the brand in other cities due to the common marginal 

costs, but the price of a brand in city j will (ideally) be uncorrelated with common 

demand shocks. Nevo (2000b, 2001) further explores similar sets of instruments in the 

ready-to-eat cereal industry (price instruments are averaged across all twenty quarters of 

available data).    
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Table 5.1: Summary of Instrument Types and Examples of Instruments in the Airline 
Context 

Instrument Type  
and Reference Instrument Description Examples of Instruments in the Airline 

Context 

Cost-Shifting 
Instruments 
Hausman (1996); 
Hsiao (2008); 
Berry and Jia (2009); 
Granados, Gupta and 
Kauffman (2012) 

Variables that impact a 
product’s cost but that are 
uncorrelated with demand 
shocks 

Hsiao (2008) uses route distance and unit jet 
fuel costs. 

Berry and Jia (2009) and Granados, Gupta, 
and Kauffman (2012) use a hub indicator. 

Granados, Gupta, and Kauffman (2012) use 
distance. 

Hausman-Type Price 
Instruments-  
Hausman, Leonard and 
Zona (1994);  
Hausman (1996);  
Nevo (2000b, 2001); 
Guevara and Ben-Akiva 
(2006);  
Guevara-Cue (2010); 
Petrin and Train (2010) 

Prices of the same brand 
in other geographic 
contexts are used as 
instruments of the brand 
in the market of interest 

Gayle (2004) uses an airline’s average prices 
in all other markets with similar length of haul 
(also used in this dissertation in Chapter 6). 

Measures of 
Competition and 
Market Power-  
Stern (1996); 
Berry and Jia (2009); 
Granados, Gupta, and 
Kauffman (2012) 

Measures of the level of 
market power by 
multiproduct firms, and 
measures of the level of 
competition 

Berry and Jia (2009) use the number of all 
carriers offering service on a route. 

Granados, Gupta, and Kauffman (2012) use 
the degree of market concentration, calculated 
as the Herfindahl index. 

Number of daily nonstop flights in the market 
operated by the airline of interest and by 
competitor airlines (used in this dissertation in 
Chapter 6). 

Measures of Non-Price 
Characteristics of 
Other Products-  
Berry, Levinsohn and 
Pakes (1995, 2004);  
Train and Winston 
(2007); 
Berry and Jia (2009) 

Average non-price 
characteristics of the other 
products supplied by the 
same firm in the same 
market 

Average flight capacity of other flights 
operated by the airline of interest in the same 
market. 

Average non-price 
characteristics of the other 
products supplied by the 
other firms in the same 
market. 

Berry and Jia (2009) use the percentage of 
rival routes that offer direct flights, the 
average distance of rival routes, and the 
number of rival routes. 

 

 

 Many other studies have used Hausman-type price instruments. For example, 

Petrin and Train (2010) model household choice of television reception options (antenna, 

cable packages, and satellite) and calculate “the price instrument for market m as the 
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average price in other markets that are served by the same multiple-system operator as 

market m”.  

 In discrete choice models of household residential location choice, a price 

instrument for dwelling unit d is calculated as the average prices of other similar dwelling 

units located within the same vicinity (between 500 and 2,500 meters away for one 

instrument, and between 2,500 and 5,000 meters away for a second instrument) (Guevara 

and Ben-Akiva, 2006; Guevara-Cue, 2010).  

 In an airline context, Hausman-type price instruments for a market are an airline’s 

average prices in all other markets with a similar length of haul. Gayle (2004) uses 

aggregate quarterly data from DB1B to investigate air passenger itinerary choice 

behavior and uses this formulation of instruments, along with cost-shifting instruments.   

  

5.4.3. Measures of Competition and Market Power as Instruments 

Stern (1996) introduces measures of the level of market power by multiproduct firms and 

measures of the level of competition as instruments. Stern (1996, p.18) notes that “Unless 

consumers value products sold by a particular firm because it is a multiproduct firm, 

measures of multiproduct ownership will be correlated with price and advertising, but be 

uncorrelated with unobserved quality.” Levels of market power focus on the number of 

products in the market and also the time since a product (and/or firm) was introduced into 

the market.  In the context of pharmaceutical drugs, he measures the level of market 

power by multiproduct firms as the number of products produced within a drug category 

by the firm which produces product j, and the sum of the time since entry over each of all 

other products (excluding product j). 
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 Stern (1996, p.18) also notes that “measures of the level of competition in the 

market, such as the number and characteristics of other products, will also affect price 

but, under the assumption that entry is exogenous, be uncorrelated with unobserved 

quality”. For example, one instrument Stern uses to capture measures of the degree of 

competition facing product j is the number of manufacturers in the market. 

 Many other studies have used similar types of instruments (for examples see 

Branstetter, Chatterjee, and Higgins, 2011; Cleanthous, 2003; Dick, 2008; Dutta, 2011). 

 Based on Stern’s approach, in the airline context, the number of flights in a 

market or the number of carriers in a market could be used as instruments. Berry and Jia 

(2009) use the number of all carriers offering service on a route as an instrument. 

Granados, Gupta, and Kauffman (2012) include an instrument that measures the degree 

of market concentration, calculated as the Herfindahl index.  

 

5.4.4. Non-Price Product Characteristics of Other Products as Instruments 

Berry, Levinsohn and Pakes (1995) derive a set of instruments using observed exogenous 

product characteristics, where price and other potentially endogenous variables are 

excluded.  The instruments are: 1.) observed product characteristics for a firm, 2.) if the 

firm produces more than one product, the sums of the values of the same product 

characteristics of other products offered by that firm, and 3.) the sums of the values of the 

same characteristics of the same products offered by other firms. Instruments of this type 

have been used in many applications, including choice of an automobile (Berry, 

Levinsohn and Pakes, 1995, 2004; Train and Winston, 2007) and demand for 

pharmaceutical drugs.  
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 Nevo (2000a) provides a clear description of how these instruments have been 

used within the automobile industry: “Suppose the product has two characteristics: 

horsepower (HP) and size (S), and assume there are two firms producing three products 

each. Then we have six instrumental variables: The values of HP and S for each product, 

the sum of HP and S for the firm’s other two products, and the sum of HP and S for the 

three products produced by the competition.” 

 

5.4.5. Other Types of Instruments 

 There are a few other sets of instruments that have been used in the literature. 

Ater and Orlov (2010) investigate the relationship between Internet access and flight on-

time performance (a measure of flight quality). As an instrument for the log of average 

quarterly airfares, the authors use an airline’s average segment fare on all other segments 

of a similar distance, which is a Hausman-type price instrument. However, as a second 

instrument, they use an airline’s rivals’ average fare on the reverse segment, which is a 

price characteristic of other products. The authors do not test for validity of instruments 

or explain the logic behind using the second instrument.  

 In a working paper by Pekgün, Griffin and Keskinocak (2013), data from a high 

speed rail operator is used to estimate price elasticities of demand. The authors note that 

since inventory reading days (or inventory check points) are control points where supply 

and demand interact through the revenue manager’s decisions, they aggregate the data by 

inventory reading days (instead of over the number of days left until train departure). 

Then, for each departure date and fare classification group, the price instruments are 

average prices lagged by inventory reading days.  
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5.5. Tests for Instruments 

There are three tests that instruments should pass to be considered valid instruments. For 

linear IV models, most statistical programs provide tests that can be used to easily check 

to see if a set of instrumental variables is valid. These methods are well known and 

documented in past literature. The following three tests can be run in Stata® (SE version 

10) as post estimation commands after running a 2SLS regression using the command 

ivregress 2sls: 

1. Test for weak instruments 

    Post-estimation command: estat first stage 

 Interpretation: If “Prob > F” is insignificant and/or the F statistic is less than 

10, then the set of IV’s are considered to be weak instruments. 

2. Test for an endogenous regressor 

 Post-estimation command: estat endog  

 Interpretation: The null hypothesis is that the variable being tested is 

exogenous. A significant p-value indicates the variable is endogenous. 

3. Test for validity of instruments 

 Post-estimation command: estat overid  

 Interpretation: The null hypothesis is that the instruments are valid. A 

significant p-value indicates the instruments may not be valid. So, the goal is to 

find a set of instruments with an insignificant p-value for this test. 

 

 For non-linear models, there are currently no Stata® functions to perform these 

tests, and until recently there was not an easy way to test for validity of instruments.  
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Guevara-Cue (2010) proposes a new test, called the Direct Test, which is simple to 

calculate from the log likelihoods of two discrete choice models, one in which 

endogeneity has not been controlled for and one in which endogeneity has been 

controlled for. Guevara-Cue shows that this simple test out performs other more 

complicated tests (see Guevara-Cue, 2010 for details about the test).  

 Since most statistical programs currently provide modules for running IV models 

and testing for validity of instruments in linear models but not non-linear models, when 

searching for a valid set of instruments it may be easier to first use linear models and tests 

readily available in Stata® and later move to non-linear models.  

 

5.6. References 

Ater, I. and Orlov, E. (2010) The effect of the internet on on-time performance in the 
airline industry. Working Paper, Tel-Aviv University and Compass Lexecon. 

 
Berry, S.T. (1994) Estimating discrete-choice models of product differentiation. The 

RAND Journal of Economics, 25 (2), 242-262.  
 
Berry, S. and Jia, P. (2009) Tracing the woes: An empirical analysis of the airline 

industry. National Bureau of Economic Research Working Paper Series. 
 
Berry, S., Levinsohn, J. and Pakes, A. (1995) Automobile prices in market equilibrium. 

Econometrica, 63 (4), 841-890. 
 
Berry, S., Levinsohn, J. and Pakes, A. (2004) Differentiated products demand systems 

from a combination of micro and macro data: The new car market. Journal of 
Political Economy, 112 (1), 68-105. 

 
Bhat, C.R. (2003) Econometric choice formulations: Alternative model structures, 

estimation techniques, and emerging directions. Resource paper for Econometric 
Models of Choice: Formulation and Estimation workshop. 2003 IATBR 
Conference, Lucerne, Switzerland, 1-54. 

 
Branstetter, L., Chatterjee, C. and Higgins, M.J. (2011) Regulation and welfare: Evidence 

from Paragraph-IV generic entry in the pharmaceutical industry. Working paper, 
Carnegie Mellon University and Georgia Institute of Technology. 

148 
 



 

 
Bresnahan, T.F. (1997) The Apple-Cinnamon Cheerios war: Valuing new goods, 

identifying market power, and economic measurement. Unpublished paper, 
Department of Economics, Stanford University. <http://www.stanford.edu/~tbres/ 
Unpublished_Papers/hausman%20recomment.pdf> (accessed 05.04.13).   

 
Blundell, R.W. and Powell, J.L. (2004) Endogeneity in semiparametric binary response 

models. The Review of Economic Studies, 71 (3), 655-679. 
 
Cleanthous, P. (2002) Patient welfare implications of innovation in the U.S. 

antidepressant market. Job market paper, Department of Economics,Yale 
University. 

 
Dick, A.A. (2008) Demand estimation and consumer welfare in the banking industry. 

Journal of Banking and Finance, 32 (2008), 1661-1676. 
 
Dutta, A. (2011) From free entry to patent protection: Welfare implications for the Indian 

pharmaceutical industry. The Review of Economics and Statistics, 93 (1), 160-
178. 

 
Gayle, P G. (2004) Does price matter? Price and non-price competition in the airline 

industry. Working Paper, Kansas State University. 
 
Goolsbee, A. and Petrin, A. (2004) The consumer gains from direct broadcast satellites 

and the competition with cable TV. Econometrica, 72 (2), 351-381. 
 
Granados, N., Gupta, A. and Kauffman, R.J. (2012) Online and offline demand and price 

elasticities: Evidence from the air travel industry. Information Systems Research. 
INFORMS. 23 (1), 164-181.  

 
Greene, W.H. (2003) Econometric Analysis ed Rod Banister, 5th ed. Prentice Hall, Upper 

Saddle River, New Jersey. 
 
Guevara, C.A. and Ben-Akiva, M. (2006) Endogeneity in residential location choice 

models. Transportation Research Record: Journal of the Transportation 
Research Board, 1977, 60-66. 

 
Guevara, C.A. and Ben-Akiva, M. (2009) Addressing endogeneity in discrete choice 

models: Assessing control-function and latent-variable methods. Working Paper 
Series, Paper No. TSI-SOTUR-09-03, Massachusetts Institute of Technology, 
Portugal Program.   

 
Guevara-Cue, C.A. (2010) Endogeneity and sampling of alternatives in spatial choice 

models. Dissertation for Doctor of Philosophy, Department of Civil and 
Environmental Engineering, Massachusetts Institute of Technology.   

 

149 
 

http://www.stanford.edu/%7Etbres/%20Unpublished_Papers/hausman%20recomment.pdf
http://www.stanford.edu/%7Etbres/%20Unpublished_Papers/hausman%20recomment.pdf


 

Hausman, J.A. (1996) Valuation of new goods under perfect and imperfect competition. 
The Economics of New Goods eds Robert J. Gordon and Timothy F. Bresnahan, 
207–248. University of Chicago Press, Chicago. 

 
Hausman, J., Leonard, G. and Zona, J.D. (1994) Competitive analysis with differentiated 

products. Annals of Economics and Statistics, No. 34, 159–180. 
 
Hsiao, C-.Y. (2008) Passenger demand for air transportation in a hub-and-spoke network. 

Dissertation for Doctor of Philosophy, Civil and Environmental Engineering, 
University of California, Berkeley. 
<http://www.nextor.org/pubs/HsiaoDissertation2008.pdf> (accessed 05.18.11). 

 
Nevo, A. (2000a) A practitioner’s guide to estimation of random-coefficients logit 

models of demand. Journal of Economics & Management Strategy, 9(4), 513-548.  
 
Nevo, A. (2000b) Mergers with differentiated products: The case of the ready-to-eat 

cereal industry. The RAND Journal of Economics, 31 (3), 395–421. 
 
Nevo, A. (2001) Measuring market power in the ready-to-eat cereal industry. 

Econometrica, 69 (2), 307–342. 
 
Pekgün, P., Griffin, P.M. and Keskinocak, P. (2013) An empirical study for estimating 

price elasticities in the travel industry. Working Paper, University of South 
Carolina. 

 
Petrin, A. and Train, K. (2010) A control function approach to endogeneity in consumer 

choice models. Journal of Marketing Research, 47 (1), 3-13.  
 
Rivers, D. and Vuong, Q.H. (1988) Limited information estimators and exogeneity tests 

for simultaneous probit models. Journal of Econometrics, 39, 347-366. 
 
Stock, J.H. and Trebbi, F. (2003) Retrospectives: Who invented instrumental variable 

regression? Journal of Economic Perspectives. 17 (3), 177–194. 
 
Stern, S. (1996). Market definition and the returns to innovation: Substitution patterns in 

pharmaceutical markets. Working paper, Sloan School of Management, 
Massachusetts Institute of Technology. 

 
Train, K. (2009) Endogeneity, Chapter 13. Discrete Choice Methods with Simulation, 

315-346. Cambridge University Press, New York, NY. 
 
Train, K.E. and Winston, C. (2007) Vehicle choice behavior and the declining market 

share of U.S. automakers. International Economic Review, 48 (4), 1469-1496. 
 
Villas-Boas, J.M. and Winer, R.S. (1999) Endogeneity in brand choice models. 

Management Science, 45 (10), 1324-1338.  

150 
 

http://www.nextor.org/pubs/HsiaoDissertation2008.pdf


 

CHAPTER 6: FLIGHT-LEVEL DAILY DEMAND MODELS WITH 

CORRECTION FOR PRICE ENDOGENEITY 

 

6.1. Abstract 

Due to a lack of publically available data, few studies within the airline industry have 

used daily pricing and demand data to investigate the impact of price fluctuations on 

customer purchases. At the same time, many airline demand models have not corrected 

for price endogeneity, which is known to lead to biased coefficient estimates. In this 

chapter online pricing and seat map data, collected from JetBlue’s website, is used to 

build models of daily flight-level demand. An instrumented variable approach (two-stage 

least squares regression) is used to control for price endogeneity, allowing consistent 

parameter estimation. A set of instruments are found to pass all validity tests, and are 

offered as instruments that can be used in disaggregate air travel models of demand. The 

price coefficient of a model corrected for price endogeneity is found to be 2.9 times more 

negative than the price coefficient for an uncorrected model, demonstrating the 

importance of correcting for endogeneity. Further, models that do not correct for 

endogeneity find inelastic demand estimates whereas models that do correct for 

endogeneity find elastic demand. Price elasticities are then estimated from the corrected 

models as a function of advance purchase, showing that customers are less price-sensitive 

for bookings made closer to the date of flight departure.  
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6.2. Background 

Within the airline industry, there is an interest in better understanding how airfares (or 

prices) influence bookings and customer purchasing behavior. A better understanding of 

how customers make tradeoffs among price and itinerary characteristics (such as 

departure time of day and departure day of week) can potentially influence scheduling 

decisions, revenue management strategies, and the design of website screen displays. 

There are two main factors that have hindered the ability to fully understand the influence 

of price on customer purchasing behavior. First, due to a lack of publically available data 

for researchers, few models have been built using detailed flight-level pricing data. Thus, 

relationships between daily airfares and daily demand are not well understood. Second, 

within the airline industry, most studies have failed to address price endogeneity and have 

assumed that prices are exogenous, which contradicts basic economic theory of supply 

and demand. Thus, the objectives of this research are to: 1.) determine whether it is 

possible to use online prices and seat maps to build detailed flight-level models of daily 

bookings, and 2.) determine whether price endogeneity can be corrected by finding a 

valid set of instrumental variables (IVs) and using IV estimation methods such as two-

stage least squares (2SLS) regression. 

 In the next section, an overview of the current literature on the topic of demand 

modeling and price elasticity estimation is provided. Next, the data and markets are 

described and descriptive statistics are presented (focusing on the relationship between 

demand and price across variables such as advance booking, departure day of week and 

time of day, booking day of week, and competitor promotional sales). Methodology and 

results are then presented. Bookings are modeled and elasticities are estimated using 
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daily online prices and seat maps from airline websites. By tracking the seat maps across 

the booking horizon, we estimate daily bookings (a measure of demand) for airline tickets 

and seats at the flight-level. Using this data, we estimate airfare price elasticity using 

ordinary least squares (OLS) regression without correcting for price endogeneity and 

2SLS regression, accounting for price endogeneity. To our knowledge, this is the first 

time online seat maps have been used to estimate price elasticities, and this is also one of 

the first studies to correct for price endogeneity in models of airline demand. 

Additionally, this is one of the only studies in models of airline demand that performs 

formal tests for validity of instruments19.     

 

6.2.1. Demand Forecasting 

Traditionally, quality of service index (QSI) models, developed by the U.S. government 

in 1957, were used during the regulation era to evaluate carriers’ requests to increase 

fares on specific routes (Civil Aeronautics Board, 1970).  These QSI models allocated 

demand across different routes as a function of three quality of service attributes (aircraft 

equipment type, number of stops, and flight frequency) in order to estimate market shares 

and passenger volumes. Later, after airline deregulation in 1978, quality of service 

attributes were expanded to include attributes such as departure and arrival times, 

departure day of week, carrier preference, and average airfares. QSI models are still used 

                                                 

 
 
 
 
 
19 Most published studies do not report tests for validity of instruments. In these studies, it is unclear 
whether they performed tests, but did not report results, or whether they did not perform tests (which means 
they may not have a valid set of instruments).  
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extensively in the airline industry. Most QSI models use Origin and Destination Data 

Bank 1A or Data Bank 1B (DB1A or DB1B)20 data. These databases do not contain 

detailed pricing information, but instead contain average quarterly prices per 

airline/market. Due to a lack of detailed pricing information in these datasets, there is a 

limited ability to use QSI models to understand how prices impact customer choices.   

 More recently, discrete choice models (or air passenger itinerary share/choice 

models) have been used to forecast demand. Depending on how the discrete choice model 

is designed, the model can incorporate different types of competition patterns among 

itineraries. For example, a discrete choice model can incorporate increased competition 

among flights that depart during similar times of the day, such as morning flights as 

compared to afternoon and evening flights.  

 A dissertation by Coldren (2005) was the first to model demand at the itinerary 

level. Computer reservation system (CRS) bookings data for over 24,000 markets, 

multiple carriers, and several levels-of-service21 were used to compare airline demand 

forecasts produced from QSI and discrete choice models. The study used multinomial 

logit (MNL) models to investigate the impact of air carrier service attributes on passenger 

choice and also used more advanced discrete choice models (multi-level generalized 

nested logit and ordered generalized extreme value models) to investigate underlying 

                                                 

 
 
 
 
 
20 DB1A and DB1B are maintained by the U.S. Department of Transportation and represent a ten percent 
sample of flown tickets collected from passengers as they board aircraft operated by U.S. airlines. 
21 The levels-of-service included were for nonstop and direct flights, as well as connecting flights with a 
maximum of two connections. 
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competitive dynamics (substitution patterns) across itineraries. Importantly, the study 

found that the discrete choice models performed significantly better than the QSI models, 

reducing the magnitude of forecast errors by 10 to 15 percent (Coldren, et al., 2003). 

Strengths of the study included the large number of markets included in the data, the 

advanced model specifications that were investigated, and the ability to compare 

forecasts with those of an actual airline’s QSI model. A limitation of the study is that 

detailed itinerary-level fare information was not available, so average quarterly fare data 

was used22. 

 A later dissertation was the first to model the joint choice of an itinerary and fare 

product (Carrier, 2008). Carrier’s work combined booking data with fare rules and seat 

availability data for 3 short-haul markets in Europe (for one airline’s nonstop, outbound 

itineraries only). Strengths of the study include the availability of disaggregate fare data23 

(the lowest fares available for each alternative), the ability to base alternatives in a choice 

set on seat availabilities data so that flights without any available seats were not included 

in a customers’ choice set, and a latent class choice model which accounted for 

heterogeneity of passenger behavior (business versus leisure passengers). The main 

limitations of the study were that data was available for only 3 markets and due to the 

small sample size, advanced logit model specifications were not estimated. 

                                                 

 
 
 
 
 
22 “Superset” data (Data Base Products, Inc. 2000, 2001), a cleaned version of DB1A/B data was used for 
fare information. Fares are based on averages for each carrier across all itineraries for each airport-pair 
within a quarter.  
23 Fares offered and their fare rules were obtained from Sabre® global distribution system and accessed 
through the Travelocity® website. 
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 To sum up the studies by Coldren and Carrier, both have different strengths and 

weakness that are quite opposite. As shown in Table 6.1, Coldren had a comprehensive 

airline dataset with over 24,000 markets, 10.6 million bookings, several airlines, and 4 

levels-of-service, which allowed the estimation of advanced discrete choice models. 

However, he only had aggregate fare information for average quarterly fares paid for 

each airline/market. Carrier, on the other hand, did not have a comprehensive airline 

dataset. Instead, he had a dataset of 3 markets, one airline, and nonstop flights only, 

which did not allow the estimation of advanced discrete choice models. However, he had 

disaggregate fare information for actual offered fares of each fare product in a choice set. 

In both of these studies, price endogeneity was not explored. 

 

 

Table 6.1: Summary of Studies Investigating Demand at the Itinerary Level 

Study Total 
Markets 

Total 
Bookings Carriers Level-of-

Service 
Advanced 

Models Fares 

Coldren 
(2003) 24,298 10,556,275 

All  
offering 
service 

Nonstop,  
Direct,  

Single-Connect, 
Double-Connect 

Yes:  
Multi-level 
generalized 
nested logit  
and ordered 
generalized 

extreme value  

Average: 
quarterly  
fare per 

airline/market 

Carrier 
(2008) 3 2,015 1 Nonstop No:   

MNL only 

Detailed:  
lowest offered 
price of each 

fare product in a 
choice set  
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 From a discrete choice modeling perspective, there is still an open research need 

for exploring advanced discrete choice model specifications using disaggregate flight-

level fare data. This could help decision-makers better understand the impact of prices on 

itinerary share, and could lead to new behavioral insights about the underlying 

competitive dynamic between itineraries. In these models, however, there is also a need 

to correct for endogeneity of airfares in order to estimate the unbiased effect of prices on 

customer purchasing decisions. Given the rather small sample size of our dataset, the 

objective of this chapter is to focus on the second research question: correcting for 

endogeneity of airfares. More advanced model specifications are left for future research. 

 

6.2.2. Price Elasticity of Demand 

Although Coldren and Carrier’s work focused on building discrete choice models of 

demand capable of better understanding customer tradeoffs and decisions, there are many 

other studies that have focused on estimating price elasticity of demand, which is the 

percent change in demand caused by a percent change in price (a measure of how 

responsive customers are to changes in price). Estimated elasticities in past literature 

have varied widely depending on the data used, the modeling methodology, and the 

markets and time period used. Some studies have corrected for price endogeneity, and 

others have not. Most studies have used aggregate data to estimate price elasticity.   

 InterVISTAS (2007) reviews 22 papers on airfare elasticities published between 

1986 and 2006, including two meta analyses of multiple publications, and finds that 

estimated price elasticities differ across many dimensions of air travel, including: 

business versus leisure travel, short-haul versus long haul travel, and level of aggregation 
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(airline, market, national, and pan-national levels). Business travelers are generally less 

elastic (less price sensitive) than leisure travelers because people traveling for business 

have less flexibility to postpone or cancel their trip. Travelers in short-haul markets are 

generally more elastic (more price sensitive) because of the availability of more inter-

modal substitutes (such as driving or taking a bus).   A meta-study by Gillen et al. (2002) 

found that market-level price elasticities in the literature have ranged from -0.198 in long-

haul international business markets to -1.743 in short-haul leisure markets. 

 The level of aggregation of the data also impacts estimated price elasticities. 

Airline-level price elasticities are generally estimated to be more elastic than market-level 

elasticities, and market-level elasticities are generally estimated to be more elastic than 

national or pan-national price elasticities (InterVISTAS, 2007).   InterVISTAS (2007) 

developed price elasticity estimates at the route, national, and pan-national levels using 

DB1B and corrected for price endogeneity using 2SLS. They find an average elasticity of 

-1.4 at the route/market-level, -0.8 at the national-level, and -0.6 at the pan-national level 

(airline specific price elasticities were out of the scope of their project).  

 Hsiao (2008) estimates discrete choice models of aggregate quarterly air 

passenger demand using aggregate quarterly data from DB1B and T100 and corrects for 

price endogeneity.  Hsiao finds price elasticity estimates of market demand that range 

between -1.052 and -2.662. 

  In a more recent study, Granados, Gupta, and Kauffman (2012) estimate log-

linear 2SLS regression models that correct for price endogeneity to investigate price 

elasticities of demand for air travel booked through online and offline booking channels. 

The authors use a dataset of airline bookings sold by travel agencies through global 
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distribution systems (GDSs)24. In a model on the whole dataset, price elasticity of 

demand is estimated to be approximately unit elastic (-1.03). The authors further break 

price elasticity estimates out by leisure versus business travel and by bookings made 

through three channels (offline, transparent online travel agents, and opaque online travel 

agents). The price elasticities for the business travel booked through the three channels 

are -0.34, -0.89, and -1.29, respectively. For the leisure travel booked through the three 

channels, price elasticity estimates are -1.33, -1.56, and -2.28, respectively. 

  

6.3. Description of Data 

Automated web client robots (or webbots) were used to query the websites of JetBlue and 

one online travel agent (OTA). The webbots collected detailed itinerary, fare, and seat 

map information for nonstop flights on a daily basis from 8/5/2010 through 9/21/2010. 

During this time period, queries were run to collect airfares and seat maps for a rolling set 

of 21 departure dates. For example, when the data collection began on 8/5/2010, 

information for flights departing on 9/2/2010, 9/3/2010, ... , to 9/22/2010 was obtained. 

For the next day of data collection, 8/6/2010, information for the same flight departure 

dates was obtained. Collecting data in this way provides information for each flight in a 

market for 21 departure dates and over a booking period from 1 to 28 days before flight 

departure. 

                                                 

 
 
 
 
 
24 GDSs include ticket sales made via online and offline channels through travel agencies but exclude 
airline direct sales. 
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6.3.1. Selection of Markets 

In selecting the sample of markets to use in this study, we control for several factors. We 

control for differences in market competition by selecting four markets where JetBlue 

and Virgin America compete head-to-head, with both offering nonstop flights. These 

markets are all long haul markets with similar flight times and lengths of haul. All of the 

markets are transcontinental flights that originate on the East coast. In selecting these 

markets, we are also controlling for equipment type. Specifically, both Virgin America 

and JetBlue mainly use Airbus 320 planes. In these markets, JetBlue flies the A320 

exclusively, and Virgin America flies the A320 in all flights in all markets with one 

exception. In JFKSFO, Virgin America offered flights on their smaller plane, the Airbus 

319, for six departure dates. 

 Table 6.2 provides a list of airport codes and airport names in our data. Table 6.3 

provides a list of the airline codes and names, and Table 6.4 contains a list of the 4 

markets included in this study, along with nonstop competitors, average fares, and 

number of bookings. A total of 7,522 bookings were observed for JetBlue. 

 

Table 6.2: Airport Codes and Names 
Airport 

Code Name of Airport, City and State 

BOS Logan International Airport, Boston, Massachusetts 
FLL Fort Lauderdale Hollywood International Airport, Fort Lauderdale, Florida 
JFK John F. Kennedy International, New York City, New York 
LAS McCarran International Airport, Las Vegas, Nevada 
LAX Los Angeles International Airport, Los Angeles, California 
SFO San Francisco International Airport, San Francisco, California 
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Table 6.3: Airline Codes and Names 
Airline 
Code Airline Type 

Carrier 
AA American Airlines Major 
B6 JetBlue Airways Low Cost 
DL Delta Airlines Major 
UA United Airlines Major 
VX Virgin America Low Cost 
 

 

 

Table 6.4: JetBlue Descriptive Statistics: Markets, Competitors, Bookings and Prices 

Market Nonstop Competitors Flight 
Number DTOD1 

Total 
Book-
ings 

Min 
Price 

Mean 
Price 

Max 
Price 

BOSLAX AA, B6, UA, VX 
473 8 844 $114 $205 $586 
483 18 927 $114 $191 $466 

JFKLAS AA, B6, DL, VX 

187 7 451 $129 $254 $463 
191 18 405 $129 $231 $463 
197 10 458 $129 $282 $586 
199 21 313 $129 $225 $463 
711 14 481 $129 $251 $526 

JFKLAX AA, B6, DL, UA, VX 

671 11 691 $129 $257 $586 
673 16 671 $129 $244 $586 
675 7 974 $129 $205 $526 
677 19 747 $129 $223 $466 

JFKSFO AA, B6, DL, UA, VX 
641 8 339 $129 $300 $586 
647 17 221 $129 $287 $586 
Totals/Averages: 7,522 $114 $233 $586 

1DTOD= Flight Departure Time of Day, in military time. For example, a DTOD of 18 means the flights 
departed sometime between 6:00pm and 6:59pm. 
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6.4. Descriptive Statistics 

The level of observation is the number of daily bookings at the flight-level. In the sample, 

we observe between 0 and 16 bookings per flight per day, with a mean of 1.9 bookings 

and a median of 1 booking25. Demand and prices are observed to vary based on several 

factors, such as advance booking, departure day of week, departure time of day, booking 

day of week, during promotional sales of low cost competitor Virgin America, and during 

Labor Day Holiday. The next several sections take a closer look at how average prices 

and average demand are influenced by these variables.   

 

6.4.1. Correlation Between Demand, Prices, and Advance Booking 

As the flight departure date approaches, average prices are observed to increase, which is 

typical in the airline industry due to revenue management practices. Additionally, 

average demand increases as the date of departure draws nearer. This means that when 

prices are high, demand is also high. This relationship is demonstrated in Figure 6.1.  

 Table 6.5 shows the correlation between average bookings, average prices and 

days from departure (DFD). Looking at the correlation coefficients also shows moderate 

to high correlations between these variables. As the day of flight departure approaches, 

average prices increase, with a correlation coefficient of -0.76. As the flight departure 

                                                 

 
 
 
 
 
25 Throughout this chapter, we use the terms “number of bookings” and “demand” interchangeably, 
although we realize that the two measures are not exactly the same. JetBlue’s flights rarely sellout, so in 
general, there is not more demand for flights than we can observe from the actual bookings. 
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date approaches, average bookings increase, with a correlation coefficient of -0.56. We 

observe higher demand for higher prices, with a correlation coefficient of 0.52.   

  

Table 6.5: Average Bookings, Average Price and DFD Correlation Coefficients 
  Mean Bookings Mean Prices DFD 
Mean Bookings 1 
Mean Prices 0.52 1 
DFD -0.56 -0.76 1 

Note: DFD= Days from departure 
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Figure 6.1: Average Daily Demand and Prices as a Function of Days from Departure 
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6.4.2. Correlation Between Demand, Prices, and Departure Day of Week 

Average daily demand and average prices are observed to differ by a flight’s departure 

day of week, as shown in Figure 6.2. Looking at the figure seems to show an inverse 

relationship between average prices and demand. Departures on Saturdays have the 

lowest prices, and departures on Mondays have the highest prices. This is intuitive, as 

many leisure travelers travel on Saturdays, whereas many business travelers pay travel on 

Mondays. 
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Figure 6.2: Average Daily Demand and Prices as a Function of Departure Day of Week 
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6.4.3. Correlation Between Demand, Prices, and Departure Time of Day 

Average daily demand and average prices are also observed to differ by a flight’s 

departure time of day, as shown in Figure 6.3. Flights departing at 10am and 5pm have 

the highest average prices but also have some of the lower average demands. Flights 

departing at 7am have one of the lower average prices, but also have the highest observed 

average demand. Once again, looking Figure 6.3 seems to show an inverse relationship 

between average prices and demand for many of the departure times. 

 

$217

$237

$248

$279

$252

$254

$239
$243

$276

$201

$221
$223

2.2

1.8

1.4

1.5

2.1

1.6

1.5

1.9

1.4

1.8

2.0

1.7

1.1

1.3

1.5

1.7

1.9

2.1

2.3

$175

$195

$215

$235

$255

$275

$295

7am 8am 9am 10am 11am 2pm 3pm 4pm 5pm 6pm 7pm 9pm

M
ea

n 
D

ai
ly

 D
em

an
d

M
ea

n 
Pr

ic
e

Departure Time of Day

Mean Price Mean Demand

 

Figure 6.3: Average Daily Demand and Average Prices as a Function of Departure Time of 
Day 
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6.4.4. Correlation Between Demand, Prices, and Booking Day of Week 

Average daily demand and average prices are also observed to differ by booking day of 

week, as shown in Figure 6.4. The figure shows that prices stay relatively constant for 

each booking day of the week (with a range of only $215-$258), which makes sense. 

Airlines generally do not charge significantly higher or lower prices for booking a flight 

on a Saturday versus on a Monday. The price differences would be expected to vary more 

by DFD and departure day of week. Although prices are observed to stay relatively 

constant for each booking day of the week, there does seem to be a difference in average 

demand. The figure seems to show that significantly fewer tickets are sold on Saturdays 

and Sundays as compared to weekdays. 
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Figure 6.4: Average Daily Demand and Average Prices as a Function of Booking Day of 
Week 
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6.4.5. Promotions, Sales, and Holidays 

During the time of data collection, low cost competitor Virgin America had three 

promotional sales. Promotional sales were identified from both the Virgin America 

website and from Travelzoo® emails.  

 As an example, one sale included a largely advertised three day system-wide fare 

sale when Virgin America announced plans to launch new service to Los Cabos and 

Cancun, Mexico. Virgin America teamed with Loopt® to offer customers a special 

promotion if they checked-in (with the free Loopt® Star App on their iPhone) at SFO, 

LAX or one of Virgin America’s mobile taco truck locations during a four hour time 

period. Customers could get a $1 two-for-one taco deal along with a two-for-one ticket 

offer valid on Virgin America’s new flights to Los Cabos and Cancun (Virgin America, 

August 31, 2010). Virgin America is quoted as saying “….significant online buzz 

circulating about the promotion, helped make it the fifth highest sales day” in Virgin 

America’s history (Arrington, 2010). 

 The data shows a significant decrease in JetBlue bookings during Virgin 

America’s promotional sales. We control for Virgin America promotions by introducing 

dummy variables into the following models for bookings made during the sale dates. 

 During the time of data collection, there was one holiday. Labor Day holiday was 

observed on Monday, September 6, 2010. We control for the holiday by introducing 

dummy variables for bookings made for flights departing on Labor Day (September 6) 

and the day after Labor Day (September 7). 
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6.5. Methodology and Results 

Regression models were run on daily bookings at the flight-level, across 21 departure 

dates (3,952 observations). In order to correct for price endogeneity, 2SLS was used with 

a set of valid instruments. Table 6.6 below provides variable definitions for all variables, 

and the last three rows of the table are the instrumental variables. The price variable is the 

one-way price captured from JetBlue’s website. 

 The set of instruments includes three variables. The main instrument is based on 

Hausman-type price instruments, which uses a firm’s own prices in other markets as 

instruments for a market of interest (Hausman, 1996; Hausman, Leonard and Zona, 

1994). We build these instruments by using JetBlue’s equivalent one-way price from the 

OTA website (round-trip prices divided by two). The second instrument is based on Stern 

(1996), which introduces measures of the level of market power by multiproduct firms 

and measures of the level of competition as instruments. Based on Stern’s approach we 

use the number of daily flights in a market as a proxy for multiproduct firms.  The third 

instrument is the square of the number of days from departure that a flight is booked. 

 In order to compare OLS to 2SLS coefficient estimates, all observations missing 

an instrumental variable were dropped. This decreased the total number of bookings by 

2.3%, for a total number of bookings of 7,352. Table 6.7 below shows the results of the 

OLS and 2SLS regressions; both use robust standard errors clustered by market. Notice 

that the price coefficient for the 2SLS regression becomes more negative, as expected. 

Another point of interest is that many of the coefficient estimates in the OLS regression 

are insignificant. However, after correcting for endogeneity, most of the coefficient 

estimates become significant.    
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 The set of instruments used were tested against the three tests discussed in 

Chapter 5, Section 4, and requirements of all tests were satisfied. The test for weak 

instruments, rejected the null hypothesis that instruments are weak, with a p-value of 

0.04. The adjusted R-square of the first stage regression on price is 0.49. The null 

hypothesis that price is actually an exogenous regressor was rejected, with a p-value of 

0.006, and the test for instrument validity did not reject the null hypothesis that the 

instruments are not valid, with a p-value of 0.10. 

 

Table 6.6: Variables and Descriptions 
Variable Variable Description 
Price Price of the flight (JetBlue's one-way price) 
vxsaledum Indicates a date that Virgin America was offering promotional sales 
travelsep6 Indicates bookings made for travel on Labor Day holiday  
travelsep7 Indicates bookings made for travel the day after Labor Day holiday 
earlymorning Indicates flight departure is 5am-7:59am 
morning Indicates flight departure is 8am-11:59am 
afternoon Indicates flight departure is Noon-4:59pm 
evening Indicates flight departure is 5pm-8:59pm 
dfd1 Indicates a booking made 1 day from flight departure 
dfd2 Indicates a booking made 2 days from flight departure 
dfd3 Indicates a booking made 3 days from flight departure 
dfd4 Indicates a booking made 4 days from flight departure 
dfd5 Indicates a booking made 5 days from flight departure 
dfd6 Indicates a booking made 6 days from flight departure 
dfd7 Indicates a booking made 7 days from flight departure 
dfd8_14 Indicates a booking made between 8 and 14 days from flight departure 
dfd15_21 Indicates a booking made between 15 and 21 days from flight departure 
dfd22_28 Indicates a booking made between 21 and 28 days from flight departure 
ddow1, …., ddow7 Indicates flight departs on a Sun, Mon,…., Sat 
bdow1, …., bdow7 Indicates flight was booked on a Sun, Mon,…., Sat 
Market Dummies Dummy variable for each market 
lnmeanb6priceothermkt  Instrumental variable: Natural log of JetBlue’s mean prices in other markets 

avgflts_vx  Instrumental variable: The average number of nonstop flights in a market 
offered by Virgin America 

Dfdsq Instrumental variable: The square of number of days from departure that a 
flight was booked 
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Table 6.7: OLS and 2SLS Regression Results 

  
OLS 2SLS 

Coeff P-value Coeff P-value 
price -0.0051 0.025 -0.0148 0.000 
vxsaledum -0.2765 0.162 -0.3456 0.009 
travelsep6 -0.6780 0.022 -0.8827 0.045 
travelsep7 -0.0266 0.901 0.6145 0.000 
Departure Time of Day (reference variable is evening-depart 5pm-8:59pm) 
earlymorning (depart 5am-7:59am) 0.2929 0.295 0.2853 0.000 
morning (depart 8am-11:59am) 0.1391 0.175 0.4302 0.057 
afternoon (depart Noon-4:59pm) 0.0167 0.661 0.2320 0.070 
Number of Days from Flight Departure Dummies (reference variable is dfd22_28) 
dfd1 1.3405 0.094 3.2414 0.000 
dfd2 1.9657 0.016 3.8990 0.000 
dfd3 1.1688 0.014 2.0446 0.000 
dfd4 0.9298 0.074 1.6683 0.000 
dfd5 0.6374 0.055 1.1600 0.000 
dfd6 0.9048 0.088 1.3096 0.000 
dfd7 0.5484 0.010 0.6695 0.000 
dfd8_14 0.4870 0.069 0.7072 0.001 
dfd15_21 0.2888 0.112 0.3440 0.022 
Departure Day of Week Variables (reference variable is ddow7-Saturday Departure) 
ddow1 (Sunday) 0.1446 0.182 0.4442 0.000 
ddow2 (Monday) 0.4711 0.059 1.0689 0.000 
ddow3 (Tuesday) 0.2861 0.018 0.2505 0.035 
ddow4 (Wednesday) 0.2384 0.102 0.3052 0.000 
ddow5 (Thursday) 0.1558 0.085 0.6312 0.024 
ddow6 (Friday) 0.3050 0.086 0.4338 0.125 
Booking Day of Week Variables (reference variable is ddow6-Friday Departure) 
bdow1 (Sunday) -0.8179 0.049 -0.6684 0.016 
bdow2 (Monday) 0.2920 0.398 0.5821 0.009 
bdow3 (Tuesday) 0.4089 0.040 0.5044 0.000 
bdow4 (Wednesday) 0.3700 0.113 0.3015 0.075 
bdow5 (Thursday) 0.2536 0.034 0.3230 0.000 
bdow7 (Saturday) -0.8112 0.023 -0.7332 0.000 
Market Dummies (reference is jfklas) 
boslax 0.0811 0.158 -0.3536 0.049 
jfklax 0.5272 0.000 0.4047 0.000 
jfksfo 0.0869 0.294 0.4335 0.000 
_cons 2.1420 0.002 3.7022 0.000 
  R-Square=0.133     

Note: Both models use robust standard errors, clustered by market. 
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6.5.1. Average Price Elasticities for Corrected and Uncorrected Models 

Table 6.8 shows the comparison between the price elasticities of demand estimated by the 

OLS and 2SLS regression models. For the OLS regression model, the estimated price 

elasticity of demand evaluated at the mean price is -0.64, which represents inelastic 

demand. After correcting for endogeneity using 2SLS, the estimated price elasticity of 

demand is -1.84, which represents elastic demand. This difference is important, as pricing 

recommendations differ for inelastic and elastic models. Specifically, inelastic models 

suggest that prices should be raised whereas elastic models suggest prices should be 

lowered. Evaluating the price elasticities at the median price gives similar results, as 

shown in Table 6.9. 

 

Table 6.8: OLS and 2SLS Price Elasticity Results (At the Mean of Price) 
  At Price=$232 (mean) 95% Confidence Interval 

OLS -0.64 -0.94 -0.34 
2SLS -1.84 -2.71 -0.98 

Note: Price elasticities are calculated over the means of all variables. 

 
 
 
Table 6.9: OLS and 2SLS Price Elasticity Results (At the Median of Price) 

  At Price=$199 (median) 95% Confidence Interval 
OLS -0.50 -0.72 -0.29 
2SLS -1.25 -1.71 -0.79 

Note: Price elasticities are calculated over the means of all non-price variables. 
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6.5.2. Price Elasticities as a Function of Advance Booking 

Price elasticities were calculated from the 2SLS model as a function of number of days 

from flight departure. Table 6.10 provides the price elasticities of demand at both the 

mean of price and also the median of price. The table shows that JetBlue’s customers are 

less price sensitive closer to flight departure. This is intuitive, as leisure passengers 

generally book further in advance of departure and business passengers often book closer 

to departure.  

 

Table 6.10: 2SLS Price Elasticity Results as a Function of Days from Departure 
DFD Price = $232 (mean) Price = $199 (median) 
1 to 7 -1.14 -0.84 
8 to 14 -2.06 -1.37 

15 to 21 -2.59 -1.62 
22 to 28 -3.40 -1.97 

Note: DFD=Days from Flight Departure 
 
 
 
 
 

6.6. Conclusions and Future Research Directions 

 
An instrumented variable approach (two-stage least squares regression) is used to control 

for price endogeneity, allowing consistent parameter estimation. A set of instruments are 

found to pass all validity tests, and are offered as instruments that can be used in 

disaggregate air travel models of demand. The instruments are based on Hausman-type 

price instruments, which use a firm’s own prices in other markets as instruments for a 

market of interest, as well as measures of the level of market power by multiproduct 

firms (as in Stern, 1996). We build the instruments by using prices and flight frequencies 

from data compiled from an OTA website.  
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 The price coefficient of the 2SLS regression model, which corrected for price 

endogeneity, is found to be 2.9 times more negative than the price coefficient for an 

uncorrected model, demonstrating the importance of correcting for endogeneity. For the 

OLS regression model, the estimated price elasticity of demand (evaluated at the mean of 

price) is -0.64, which represents inelastic demand. After correcting for endogeneity using 

2SLS, the estimated price elasticity of demand is -1.84, which represents elastic demand. 

 It would be interesting to aggregate our data and/or to mis-specify the model 

using average prices instead of disaggregate prices. A priori, it is expected that price 

elasticities from an aggregated model would be less elastic than the price elasticities of 

our model.  This is because on a daily basis, airline customers can choose to purchase 

departure dates with lower prices, or they can choose a different airline with a lower price 

offering for the day, or they can wait to purchase when a lower price is offered. This 

dynamic would not be captured in aggregate data. 

 We find that the total number of bookings is decreased during ongoing 

promotional sales of JetBlue’s low cost competitor Virgin America.  In future research, it 

would be interesting to model JetBlue and Virgin America demand together in the same 

model using a nested logit model to capture the degree of substitution between the 

airlines. JetBlue and Virgin America are likely to be close substitutes. Incorporating a 

major carrier into the models could add insight about the substitutability of LCCs versus 

major carriers.  

 Also, there is a future research need for incorporating competitor prices into 

revenue management forecasts. Within the airline industry, there has been growing 

interest in developing the next generation of revenue management (RM) systems that can 
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more accurately represent how customers make decisions in today’s online environments. 

The development of these next-generation “choice-based” RM systems require 

information about the prices (or “choices”) viewed by customers at the time of booking – 

both on the carrier of interest and, potentially, across several different competitors.  
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CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

7.1. Introduction 

This dissertation accomplished four main research objectives, each related to leveraging 

online data to better understand airline pricing and product strategies, and how these 

strategies impact customers, as well as the industry in general. The chapters of this 

dissertation are written in journal format, with each chapter focusing on one of the 

objectives. Chapter 2 investigated the relationship between airline prices and competitive 

market structures. Chapter 3 identified and reviewed product debundling trends that 

recently occurred in the U.S. airline industry. Chapter 4 focused on one debundling trend: 

seat reservation fees. We investigated factors that influence airline customers’ premium 

coach seat purchases and estimated revenue impacts of different seat pricing strategies. 

Chapter 5 reviewed the subject of price endogeneity, and Chapter 6 used online prices 

and seat maps to model daily flight-level bookings and price elasticities. A valid set of 

instrumental variables were found and used to correct for price endogeneity. This 

dissertation also includes Appendix A, which provides more detailed information about 

an online dataset of competitor prices that was compiled using automated web client 

robots. Finally, this last chapter (Chapter 7) summarizes major findings related to each 

chapter’s research objective and outlines directions for future research. 
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7.2. Major Conclusions and Directions for Future Research 

 

7.2.1. Competitive Airline Pricing Policies 

The first research objective of this dissertation explored airline pricing policies in markets 

with different types of competitive market structures using a dataset of online prices from 

2007 (Chapter 2). Several observations were made using the disaggregate pricing dataset. 

In contrast with findings of past research on price dispersion, we found that low price 

dispersion can be associated with both low and high market concentration, depending on 

the characteristics of the market and the specific carriers offering flights. The presence of 

low cost carriers (LCCs) was seen to have an impact on pricing of other carriers.  

 We also found that pricing strategies in low cost carrier monopoly routes are 

different than major carrier monopoly routes. Even in a monopoly situation, low cost 

carriers (especially Southwest) demonstrate flat pricing and price dispersion as the day of 

departure approaches. These differences in monopoly routes highlight the importance of 

understanding price dispersion at the detailed, disaggregate level when analyzing the 

impact of future mergers and acquisitions. 

 An additional finding was that markets with codeshares (specifically codeshares 

between US Airways and United Airlines) sometimes exhibit unusually high price 

dispersion on the airline that is selling tickets for a flight operated by another airline. 

There is a need for more research, at the disaggregate level, on how codesharing affects 

pricing within a market. As more and more airlines begin to use codeshares, 

understanding the impacts on the market will become more important. 
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 Additionally, two markets where two nonstop LCCs compete (which occurs 

rarely in the U.S.) were investigated. Competition between LCCs is increasing in the 

U.S., so an important area of future research is to better understand competition in these 

markets. We offer a database of markets where low cost carriers compete in Appendix A, 

which can be used in future research.  

 Most importantly, this part of the dissertation demonstrated the importance of 

disaggregate data that describe individual airline behavior, as aggregate data can hide 

important details in the data. In future research, there is a need for publically available 

sources of disaggregate demand and pricing data, which could lead to new insights into 

the impact of mergers and acquisitions on consumer welfare. 

 

7.2.2. Product Debundling 

The second research objective of this dissertation identified and reviewed product 

debundling trends that occurred in the U.S. in 2009-2010 (Chapter 3). We estimate the 

debundling phenomenon has diluted revenues to the U.S. Airport and Airways Trust 

Fund (AATF) by at least five percent. This is important as the AATF finances 

investments in the airport and airway system. The AATF was established as a source of 

funding that would increase concurrently with the use of the system, and assure timely 

and long-term commitments to capacity increases. The finding that debundling has 

diluted revenues to the AATF means that policy-makers may need to tax ancillary fees in 

the future in order to maintain the viability of the fund. 

 We anticipate that the “ancillary revenue” phenomenon is likely to continue in the 

U.S. market among low cost and network carriers. In future research, there is a need to 
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better understand how ancillary fees impact customer satisfaction and loyalty. There is 

also a need to understand what factors drive customers to purchase add-on services, what 

aspects of the services that they value, and how these valuations may differ across 

customer segments. 

 

7.2.3. Premium Coach Seat Purchasing Behavior 

The third research objective of this dissertation investigated factors that influence airline 

customers’ premium coach seat purchases, and also estimated revenue impacts of 

different seat pricing strategies (Chapter 4). Several new behavioral insights into seat 

reservation fees were found. As planes fill up, customers are more likely to purchase a 

premium coach seat (with extra legroom and early boarding), regardless of how far in 

advance they purchase a ticket. This suggests that the ability of airlines to charge seat 

fees is strongly tied to load factors, which has several implications. First, concerns 

expressed by customers and government officials about the importance of clearly 

communicating airlines’ seat policies appear to be valid. It is important to ensure that 

customers are not being misled into making premium seat fee purchases by the 

information displayed on seat maps.  Second, the U.S. airline industry is currently going 

through a series of mergers and acquisitions, and has seen a reduction in overall domestic 

capacity, which has led to record-high load factors.  In an environment in which load 

factors are high, the airlines’ ability to generate revenues from seat fees is strong, and 

several industry pricing models related to seat fees are viable.  However, if load factors 

decrease in the future, we would expect that the incremental revenues generated from seat 

fee reservations would also decrease. 
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 We also find that customers who purchase tickets closer to the departure date are 

willing to pay higher seat fees, and that JetBlue could increase profits by optimizing 

prices. We find that JetBlue’s seat fees are currently underpriced in many markets; an 

optimal static fee would increase revenues by 8 percent whereas optimal dynamic fees 

would increase revenues by 10.2 percent. In addition, if JetBlue were to leave their seat 

fees unchanged and instead blocked certain rows of seats for premier customers, they 

could potentially increase revenues by 12.8%.  This finding underscores the importance 

of ensuring customers are not inadvertently misled into purchasing premium seats by seat 

map displays that block seats for premier customers.   

 There are several extensions of this work that could be addressed by using stated 

preference surveys. Currently, it is unclear what specific attributes of premium coach 

seats are valued by customers, and how these valuations may differ across customer 

segments.  For example, do customers purchasing JetBlue’s premium coach seats value 

extra legroom?  Do they value the ability to board first and store luggage in overhead 

bins?  Do they value the ability to deplane first and have more time to make connecting 

flights?  Determining the value of each of these components will help airlines better 

design products and bundles that provide the most value for customers. It will also help 

airlines determine whether they should invest in adding sections in coach that offer extra 

legroom, or simply sell existing coach seats that provide early boarding and alighting 

privileges.  This is a particularly important decision for carriers, as removing planes from 

service to remove row(s) of seats to add extra legroom is costly, particularly when planes 

are flying near record-high load factor levels.   
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7.2.4. Flight-Level Demand Models with Correction for Price Endogeneity 

 The last objective of this dissertation was to model daily flight-level bookings and 

estimate price elasticities using methods that correct for price endogeneity. Daily online 

prices and seat maps from airline websites were used to compare airfare price elasticity 

estimates using ordinary least squares (OLS) regression without correcting for price 

endogeneity and two-stage least squares (2SLS) regression which corrects for 

endogeneity. Results show the importance of correcting for price endogeneity. For the 

OLS regression model, the estimated price elasticity of demand is -0.64, which represents 

inelastic demand. After correcting for endogeneity using 2SLS, the estimated price 

elasticity of demand is -1.84, which represents elastic demand. This difference is 

important, as pricing recommendations differ for inelastic and elastic models, i.e., 

inelastic models suggest prices should be raised whereas elastic models suggest prices 

should be lowered. Further, a set of instruments are found to pass validity tests and can be 

used in future models of daily flight-level demand. To our knowledge, this is the first 

time online seat maps have been used to estimate price elasticities. This is also one of the 

first studies to correct for price endogeneity in models of airline demand and to test for 

validity of instruments.  

 We also find that the total number of bookings is decreased during ongoing 

promotional sales of JetBlue’s low cost competitor Virgin America.  In future research, it 

would be interesting to model JetBlue and Virgin America demand together in the same 

model using a nested logit model to capture the degree of substitution between the 

airlines. JetBlue and Virgin America are likely to be close substitutes. Incorporating a 
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major carrier into the models could add insights about the substitutability of LCCs versus 

major carriers. 

 For future research it would be interesting to aggregate our data and/or to mis-

specify the model using average prices instead of disaggregate prices. A priori, it is 

expected that price elasticities from an aggregated model would be less elastic than the 

price elasticities of our model.  This is because on a daily basis, airline customers can 

choose to purchase departure dates with lower prices, or they can choose a different 

airline with a lower price offering for the day, or they can wait to purchase when a lower 

price is offered. This dynamic would not be captured in aggregate data. 

  Also, there is a future research need for incorporating competitor prices into 

revenue management forecasts. Within the airline industry, there has been growing 

interest in developing the next generation of revenue management (RM) systems that can 

more accurately represent how customers make decisions in today’s online environments. 

The development of these next-generation “choice-based” RM systems require 

information about the prices (or “choices”) viewed by customers at the time of booking – 

both on the carrier of interest and, potentially, across several different competitors.  

 

7.3. Concluding Thoughts  

Although this disssertation has shown how online data can be leveraged to better 

understand airline and air passenger behavior, it is important to note that the use of 

competitive price information is somewhat controversial, despite the fact that today the 

majority of large U.S. carriers purchase competitive price information from firms such as 

QL2® or Infare Solutions.  
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 The pricing and seat maps we collected from the internet allowed us to explore 

questions that airlines themselves would not be able to explore using their own data. For 

example, JetBlue is not able to recreate the seat maps viewed by customers at the time of 

purchase. To do this, they would need to invest hundreds of thousands of dollars to 

collect this information through their website. Our approach offers a more cost-efficient 

way to examine this problem and provides some of the first insights that are needed for 

airlines to justify investments required to collect more detailed online data.  Our approach 

is also one that can be replicated by government agencies or public advocacy groups 

interested in understanding the role of seat map displays on customer purchasing 

behavior.   

 Looking ahead, we expect online data to play an even more critical role in 

aviation studies. We also expect continued discussions around maintaining privacy of 

individual-level consumer data, and the ultimate benefit to firms and consumers of using 

competitive price information.  Using competitor information could lead to lower price 

offerings in markets as carriers match fares. It could also lead to spiral down of profits for 

carriers, and an attempt to return to more opaque pricing through debundling product 

attributes and recreating bundles from these separate products.  In turn, this would likely 

lead to increased tensions among carriers and global distribution systems, the latter of 

which currently do not have the ability to distribute detailed debundled products 

themselves.  

 Ancillary fees are often tied to different fares and/or frequent flyer status, which 

may encourage customers to book on airline websites rather than travel agency websites. 

For some airlines, the ability to reserve premium seats can only be done online if 
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customers first log in to the website using their frequent flyer account. By requiring that 

customers log in, the airline is able to tailor seat selections to each customer. The airline 

also indirectly benefits from encouraging customers to log in at the beginning of the 

search process (versus when a ticket is ultimately purchased) in the sense that it can 

unobtrusively observe the sequence of screens across a single or multiple website session, 

which can provide valuable marketing information. However, the ability to track 

individuals during their online search process may also raise new privacy concerns that 

need to be addressed in the future.   
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APPENDIX A: ONLINE PRICING DATABASE 

 
 
Mumbower, S. and Garrow, L.A. (2013) Online pricing data for multiple U.S. carriers. 

Submitted to Manufacturing & Service Operations Management. Invited for 
second round review on June 27, 2013. 

 
 

A.1. Abstract 

This section describes a database of online airline prices collected from a major online 

travel agent and one low cost carrier. The database provides detailed pricing data for all 

nonstop flights offered in a market. Data are provided for 42 domestic U.S. markets 

across a 28-day booking horizon for 21 departure dates. Each of the 42 markets is served 

by one or more low cost carriers. These data can be used to investigate the evolution of 

prices and price dispersion for monopoly, duopoly, and oligopoly markets.  The data can 

also be used to create simulated datasets for benchmarking the performance of revenue 

management algorithms that consider competitors’ prices. We hope to address research 

gaps by making this dataset publically available for other researchers to use.  
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A.2. Introduction  

The U.S. airline industry is fiercely competitive market and one in which it has 

historically been difficult to raise fares.  According to the Air Transport Association 

(2010), in the first 30 years after passenger deregulation (which occurred in the U.S. in 

1978), domestic airline prices fell 41.2% in real terms. This decline is due to multiple 

factors, including the increased use of the internet as a major distribution channel and the 

increased market penetration of low cost carriers (LCCs).  For example, in 2007, 

approximately 55 million (or one in four) U.S. adults traveled by commercial air and 

were internet users (PhoCusWright, 2008). In 2009 Southwest Airlines was the largest 

U.S. domestic carrier, carrying over 101.3 million passengers; 81% of these passengers 

made their bookings via southwest.com (Southwest Airlines 2009, 2010). 

 Since deregulation, there has been continued interest in understanding how 

competitive factors and industry consolidation influence ticket prices.  However, the 

majority of these studies have been based on aggregate quarterly fare data that is 

publically available in the T100 or DB1A/1B databases (Bureau of Transportation 

Statistics 2010a, 2010b). Examples include studies by Borenstein (1989) Borenstein and 

Rose (1994), Dai, Liu and Serfes (2012), Gerardi and Shapiro (2007), Hayes and Ross 

(1998), Verlinda (2005) and Verlinda and Lane (2004).  Only a few pricing studies have 

been based on disaggregate data, including one study by Giaune and Guillou (2004) that 

used ticket observations from 20 routes from a global central reservation system, and a 

second study by Bilotkach (2006) that used pricing information for three routes collected 

from Travelocity®.  The lack of detailed pricing data across the booking horizon has 

inhibited researchers’ ability to fully understand customers’ willingness to pay for 
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different service attributes (e.g., departure time and carrier preferences).  Researchers’ 

ability to fully evaluate consumer welfare benefits associated with deregulation, mergers 

and acquisitions, and alliances has also been limited because the T100 and DB1A/1B 

databases do not provide information about the distribution of ticket prices and number of 

lower-priced tickets sold to consumers.  

 Within the airline industry, there has been growing interest in developing the next 

generation of revenue management (RM) systems that can more accurately represent how 

customers make decisions in today’s online environments. This interest is driven by the 

recognition that today’s market conditions are distinct from those seen during the first 

two decades following deregulation when the first generation of RM systems was 

developed. The development of these next-generation “choice-based” RM systems 

require information about the prices (or “choices”) viewed by customers at the time of 

booking – both on the carrier of interest and, potentially, across different competitors. It 

is becoming more common for aviation and other service firms to systematically collect 

pricing information by programming webbots and/or by purchasing the services of firms 

that specialize in the extraction of unstructured internet data.  For example, Travelocity® 

reported that it used webbots to query its competitors’ sites to investigate how often (and 

why) it was not price competitive (Smith et al., 2007).  

 Although pricing data is routinely collected by industry, the amount of data 

available to researchers for empirical testing and benchmarking of different RM 

algorithms has been limited. There are only a few studies that have used industry data for 

choice-based RM applications, including one by Vulcano, van Ryzin and Chaar (2010) 

that is based on a single airline market, one by Newman et al. (2013) that is based on a 
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single hotel property, one by Farias, Jagabathula and Shah (forthcoming) that uses data 

from a car dealership and data from Amazon on DVD sales, and one by Gaur, 

Muthulingam and Swisher (2013) that is based on sales of college textbooks.  Although 

these studies have used industry data, they are limited in the sense that they exclude 

pricing effects or only consider a single firm’s prices.   

 The objective of this appendix is to help address these research gaps by providing 

pricing information over a four week booking horizon for 42 U.S. markets and 21 

departure dates.  This airline pricing database contains over 228,000 price observations 

and can be used to investigate the evolution of prices across flights for a range of 

competition structures. The database can also be used to create simulated datasets for 

benchmarking the performance of RM systems, including those that incorporate 

information about competitor prices and consider the impact of low cost carriers. The 

datasets are available to all researchers as long as the researcher cites this document as 

the source.  In the following sections, we describe the data, the data collection process 

(accomplished through the use of daily automated queries, or webbots) and highlight 

potential limitations in the data. 

 

A.3. Description of Datasets 

Pricing data was collected in 42 markets for all nonstop flights departing between 

September 2, 2010 and September 22, 2010. A booking horizon of four weeks was 

collected for each departure date. This section describes the fields available for analysis, 

the process used to select the markets included in the database, and basic descriptive 

statistics.   
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A.3.1. Data Fields 

Round-trip prices for nonstop flights were obtained from a major online travel agency 

(which we refer to as OTA). These round-trip prices represent the lowest price (or fare) 

available for a particular outbound flight for a trip that involves a one-night stay; the 

inbound flight that would be required to obtain this lowest fare is not known. Equivalent 

round-trip prices for nonstop flights were obtained from one low cost carrier’s website 

(which we refer to as LCC1). The “equivalent round-trip price” is obtained by 

multiplying LCC1’s one-way fare by two and is comparable to the “round-trip price” 

obtained for other carriers through the OTA.   

 There are two databases: one for the OTA prices and one for LCC1 prices. 

Descriptions of the fields available in these databases are provided in Table A.1, and a 

list of airport codes are provided in Table A.2.  Both databases include the same 

variables. The majority of the fields are self-explanatory; however, those related to 

affiliate relationships merit further discussion. 
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Table A.1: Fields Available in Dataset 
Name Definition 

Market 

Indicates the origin and destination airports associated with the nonstop flight.  
For example, BOSLAX represents a flight that originated at Logan International 
Airport in Boston and landed at the Los Angeles International Airport.  Table A.2 
provides a list of airport codes. 

Price 
For the OTA dataset this is the round-trip price, excluding taxes.  
For the LCC1 dataset this is the one-way price, excluding taxes, multiplied by 
two. 

FlightNumber Flight number assigned by airline. 

DepartureTime Scheduled departure time (In military hours and based on the local time at 
departure airport). 

DepartureTime_hr Hour of scheduled departure time (In military hours and based on the local time at 
departure airport). 

DepartureTime_min Minutes past the hour of scheduled departure time (based on the local time at 
departure airport). 

CaptureDate Date the pricing query was made. 
DepartureDate Departure date (based on the local time at departure airport). 

DFD Number of days from flight departure that the query was made (defined as 
departuredate minus capturedate). 

MarketingAirline Code associated with the marketing airline that is selling a ticket for the flight.  
OperatingAirline Code associated with the airline that operates the flight.  

Affiliate Value of 1 indicates a flight in which an affiliate carrier operates on behalf of a 
parent airline. Only the parent airline markets the flight. 

Dcapturedate Day of capture date. 
Mcapturedate Month of capture date. 
Ddeparturedate Day of departure date. 
Mdeparturedate Month of departure date. 
Ddow Departure day of week, 1=Sunday, … 7=Saturday 
Cdow Capture day of week, 1=Sunday, … 7=Saturday 

 

 

 Airlines can own other airlines or establish operating contracts with regional 

airlines. These wholly-owned subsidiaries and regional (or affiliate) carriers operate 

flights on behalf of the parent airline.  For example, American Eagle is a wholly-owned 

subsidiary that operates flights on behalf of American Airlines, and SkyWest is a regional 

carrier that operates flights on behalf of Alaska and Delta.  In an affiliate relationship, the 

parent airline is the one that markets (or sells seats on) that flight whereas the affiliate 

carrier is the one that operates the flight.  A flight that is operated by an affiliate carrier is 

identified in the data when the Affiliate variable is set equal to one. The Marketing Airline 
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will be populated with a code for the parent airline and the Operating Airline will be 

populated with a code for the affiliate partner. Lists of parent and affiliate airline codes 

are listed in Tables A.3 and A.4 (note that actual airline codes have been masked). An 

example is given in Table A.5, which gives a sample of observations from the OTA data 

(first four rows) and LCC1 data (last four rows). The unit of observation in the databases 

is an outbound flight that is uniquely identified by the market, capture date, departure 

date, marketing airline, and flight number. The third row of Table A.5 shows that flight 

number 3131 is marketed by parent airline M4 and operated by affiliate airline A8. 

 

Table A.2: Airport Codes and Names 
Airport Code Name of Airport, City and State 
ATL Hartsfield-Jackson International Airport, Atlanta, Georgia 
AUS Austin Bergstrom International Airport, Austin, Texas 
BOS Logan International Airport, Boston, Massachusetts 
BUF Buffalo Niagara International Airport, Buffalo, New York 
BWI Baltimore-Washington International Thurgood Marshall Airport, Baltimore, Maryland 
CAK Akron Canton Airport, Green, Ohio 
DEN Denver International Airport, Denver, Colorado 
FLL Fort Lauderdale Hollywood International Airport, Fort Lauderdale, Florida 
IAD Washington Dulles International Airport, Washington D.C. 
ICT Wichita Mid-Continent Airport, Wichita, Kansas 
IND Indianapolis International Airport, Indianapolis, Indiana 
JAX Jacksonville Airport, Jacksonville, Florida 
JFK John F. Kennedy International, New York City, New York 
LAS McCarran International Airport, Las Vegas, Nevada 
LAX Los Angeles International Airport, Los Angeles, California 
LGA La Guardia Airport, New York City, New York 
MCO Orlando International Airport, Orlando, Florida 
MDW Chicago Midway International Airport, Chicago, Illinois 
OAK Oakland International, Oakland, California 
ORD Chicago O'Hare International Airport, Chicago, Illinois 
PBI Palm Beach International Airport, Palm Beach, Florida 
PDX Portland International Airport, Portland, Oregon 
PHL Philadelphia International Airport, Philadelphia, Pennsylvania 
PIT Pittsburgh International Airport, Pittsburgh, Pennsylvania 
ROC Greater Rochester International Airport, Rochester, New York 
SAN San Diego International Airport, San Diego, California 
SEA Seattle-Tacoma International Airport, Seattle, Washington 
SFO San Francisco International Airport, San Francisco, California 
SNA John Wayne Airport, Orange County, Santa Ana, California 
SYR Syracuse Hancock International Airport, Syracuse, New York 
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Table A.3: List of Parent Airline Codes 
Airline 
Code 

Pricing 
Structure 

Type  
Carrier 

L1 One-way LCC 
L2 One-way LCC 
L3 One-way LCC 
L4 One-way LCC 
L5 One-way LCC 
M1 Round-trip Major 
M2 Round-trip Major 
M3 One-way Major 
M4 One-way Major 
M5 Round-trip Major 

 

 

Table A.4: List of Affiliate Airline Codes 

Affiliate 
Airline Code 

Associated  
Parent Airline 
Codes 

A1 M1 
A2 M1, M3 
A3 M1 
A4 M2 
A5 M1 
A6 M5 
A7 M1 
A8 M4 
A9 M1 
A10 M1 
A11 M4 

 

 



 

Table A.5: Sample Observations 

Market Price Flight 
Number 

Departure 
Time Capture Date Departure 

Date DFD Marketing 
Airline 

Operating 
Airline Affiliate 

PHLMCO $249 863 18:15 2010-09-01 2010-09-04 3 M4 M4 0 
PHLMCO $220 629 18:30 2010-09-01 2010-09-04 3 L2 L2 0 
PHLMCO $249 3131 20:35 2010-09-01 2010-09-04 3 M4 A8 1 
PHLMCO $220 627 20:40 2010-09-01 2010-09-04 3 L2 L2 0 
PHLMCO $318 364 10:20 2010-09-01 2010-09-04 3 L1 L1 0 
PHLMCO $278 2061 15:30 2010-09-01 2010-09-04 3 L1 L1 0 
PHLMCO $278 2609 8:25 2010-09-01 2010-09-04 3 L1 L1 0 
PHLMCO $318 3408 12:55 2010-09-01 2010-09-04 3 L1 L1 0 
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A.3.2. Market Selection and Descriptive Statistics 

Data was collected for a sample of U.S. markets in which at least one low cost carrier 

(LCC) provided daily nonstop service. A stratified sample was used to select a minimum 

of four markets for each competitive structure, shown in Table A.6. However, some 

competition structures appeared less than four times in the U.S. network, and thus less 

than four markets were included for these cases. The markets included in the dataset are 

described in Table A.6, along with the market structure (number of low cost and major 

carriers offering nonstop flights) and median prices for each competitor.  

 The database of OTA prices contains a total of 186,268 unique prices that 

correspond to a specific market, search date, departure date, marketing airline, and 

nonstop flight number. The database of LCC1 prices contains a total of 42,434 unique 

prices. These prices can be used for a range of different analyses. Figure A.1 shows an 

example of median lowest fares that each carrier offered for each unique departure date 

and search date. The median prices are for one market (BOSLAX) across the 28 day 

booking horizon.  The variation in fares across the booking horizon highlights one of the 

key strengths of the database, namely the ability to investigate the evolution of fares 

across the booking horizon. 
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Table A.6: Median Prices, by Market and Competition Structure 

Market 
Structure Market 

Median Ticket Price (U.S. Dollars) 
Low Cost Carriers Network Carriers 

L1 L2 L3 L4 L5 M1 M2 M4 M3 M5 

1 LCC, 
0 Major  

BWILAS $458 - - - - - - - - - 
BWIMDW $254 - - - - - - - - - 
JFKOAK - - $390 - - - - - - - 
JFKPBI - - $232 - - - - - - - 
LGACAK - $178 - - - - - - - - 
SYRMCO - - $222 - - - - - - - 

1 LCC, 
1 Major 

ATLICT - $153 - - - $225 - - - - 
BOSIAD - - $118 - - - $174 - - - 
BOSMCO - - $217 - - $212 - - - - 
IADSFO - - - $455 - - $433 - - - 
JFKFLL - - $212 - - $176 - - - - 
JFKPDX - - $476 - - $467 - - - - 
LGAIND - $161 - - - $190 - - - - 
SNASFO $202 - - - - - $202 - - - 

1 LCC, 
2 Major 

IADLAX - - - $388 - - $313 - - $278 
JFKORD - - $235 - - $255 - - - $225 
LGAATL - $228 - - - $272 - - - $258 
SEALAX - - - $224 - - $269 - $244 - 
SEASFO - - - $220 - - $203 - $180 - 

1 LCC, 
4 Major LASLAX $194 - - - - $194 $175 $175 - $175 

2 LCC, 
0 Major 

BWIJAX $228 $148 - - - - - - - - 
BWIMCO $190 $168 - - - - - - - - 
FLLAUS $280 - $218 - - - - - - - 
FLLSFO - - $268 $292 - - - - - - 
MCOAUS $218 - $211 - - - - - - - 
PITMCO $226 $178 - - - - - - - - 
ROCMCO - $178 $198 - - - - - - - 

2 LCC, 
1 Major 

BOSDEN $288 - $308 - - - $478 - - - 
FLLLAX - - - $271 $290 $248 - - - - 
IADMCO - $163 $180 - - - $173 - - - 
LGAFLL - - $206 - $169 $181 - - - - 
PHLMCO $220 $162 - - - - - $162 - - 
SANSFO $154 - - $132 - - $116 - - - 

2 LCC, 
2 Major 

BOSLAX - - $308 $298 - - $298 - - $298 
BOSSFO - - $378 $375 - - $369 - - $345 
JFKLAS - - $417 $496 - $382 - - - $370 
LASSFO $178 - - $210 - - $188 $184 - - 

2 LCC, 
3 Major 

JFKLAX - - $358 $390 - $338 $380 - - $380 
JFKSFO - - $460 $457 - $363 $447 - - $408 

2 LCC, 
4 Major LAXSFO $118 - - $128 - $114 $108 - $156 $108 

3 LCC, 
0 Major 

BOSBWI $124 $78 $101 - - - - - - - 
BUFMCO $210 $210 $219 - - - - - - - 
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Figure A.1: Example of a Market’s Median Lowest Prices, by Days from Flight Departure 
and Airline 
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A.4. Additional Data Details 

This section describes in more detail the process used to create a database of airline 

prices from the websites of the OTA and LCC1, and also discusses the strengths and 

limitations of the data. 

 

A.4.1. Overview of the Data Collection Process 

Web client robots (or webbots) written in PHP were used to collect airfares for a rolling 

set of departure dates. The period of data collection ran from 8/5/2010 through 

9/21/2010. When the data collection began on 8/5/2010, information for flights departing 

on 9/2/2010 (or 28 days in advance) were collected.  On 8/6/2010, information for flights 

departing on 9/2/2010 (or 27 days in advance) as well as information for flights departing 

on 9/1/2010 (or 28 days in advance were collected).  The process completed until 28 days 

of pricing information were collected for flights departing on 9/2/2010 to 9/22/2010. 

After the webpages were collected, PHP scripts were written to extract (or parse) 

itinerary and fare information.   

 We collected round-trip prices from the OTA and one-way prices from LCC1.  

This is because airlines use different pricing methods.  Round-trip pricing is used by 

many major airlines, including American, Continental, Delta, and United.  Round-trip 

pricing enables an airline to offer different prices for customers who are traveling over a 

Saturday night and/or for customers who are traveling for a minimum number of days.  In 

combination with advance purchase restrictions, round-trip pricing enables airlines to 

tailor prices for more price-sensitive (and often leisure) travelers who could purchase 

further in advance of departure and stay over a Saturday night.  In round-trip pricing, a 
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price is generated for each unique combination of an outbound (or departing) and 

inbound (or returning) itinerary.  A one-day round-trip price refers to a price that is 

generated when the length of stay is equal to one night away from home (this occurs 

when the inbound date minus the outbound date is equal to one).  

 Due to computational constraints, we could not collect round-trip prices for every 

possible combination of outbound and inbound flights. Nor could we collect round-trip 

prices for multiple lengths of stay.  We restricted the data collection to one-day round-trip 

prices. Our database associates a round-trip price for each outbound nonstop flight 

displayed on the OTA.  This round-trip price reflects the minimum price that would be 

available to the customer if he/she selected that outbound flight; however, the inbound 

flight that generates this lowest fare is not recorded.   

 Although major carriers offer both round-trip and one-way fares, we did not 

collect one-way fares through the OTA, as the sum of the one-way fares was much higher 

than the equivalent round-trip fares for those carriers that used round-trip pricing.  It was 

thus necessary to associate a one-day round-trip fare with each outbound itinerary in 

order to create a database of “comparable” fares across carriers. 

 Because we were not able to capture LCC1 prices from the OTA, we collected 

LCC1 fares directly from their website. LCC1 uses one-way prices (i.e., each flight has a 

unique price). An ideal data collection would have been to run two one-way queries for 

each LCC1 market, one for the outbound departure date and airport pair and the second 

for the inbound departure date and airport pair.  Then, an equivalent one-day round-trip 

price for each outbound flight could have theoretically been obtained.  However, this 

would have greatly increased the number of queries performed on LCC1’s website.  
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Instead, we generate an “equivalent round-trip” fare, using the one-way price for a 

market multiplied by two. 

    

A.4.2. Limitations  

The pricing data contained in the online database is representative of airline prices that 

were available to consumers, but they may not always represent the actual prices viewed 

by or purchased by consumers.  For example, the prices displayed on the OTA’s website 

may differ from prices displayed on different online travel agency websites, carrier 

websites, or other distribution channels. In addition, for data collected through the OTA, 

it may not be possible to track prices for a given flight across the booking horizon, as 

OTA displays (and specifically which flights they choose to show) can be influenced by 

online travel agencies’ profit-maximizing strategies (Smith et al., 2007). This includes the 

practice of providing more display space for itineraries operated by a specific carrier in 

order to drive sales to that carrier, thereby enabling online travel agencies to reach sales 

volume hurdles that result in substantial commission revenue (Smith et al., 2007). 

 An additional limitation is that the “equivalent round-trip” LCC1 price in the database 

is not exactly the same as the OTA round-trip prices. Although the prices should be 

similar, there is potential measurement error when directly comparing LCC1 prices to 

other competitor prices collected from OTA.   

 

A.4.2.1. Completeness of Data 

 The database is approximately 80 percent complete.  This is due to the fact that, 

for certain data collection dates, query times were longer than normal and/or failed to 

199 
 



 

return information. These types of problems can occur for various reasons and may be 

more prevalent when demands on the OTA and LCC1 sites are high, i.e., when many 

individuals are searching for information. 

 The final dataset for the OTA (representing 40 markets) should contain 23,520 

unique market, departure date, and capture date observations; 15.2 percent of these 

observations were not collected.  The final dataset for LCC1 (representing 16 markets) 

should contain 9,408 unique observations; 21.2 percent of these observations were not 

collected.  For the OTA, missing data is approximately randomly distributed across the 

different days from departure.  However, for LCC1, the distribution of missing data is not 

random; the data is more complete for those flights that are closer to their departure date 

(or have smaller days from departures).  For example, for data collected at days from 

departure 28, a total of 32 percent is missing whereas for data collected at days from 

departure one, only six percent of the data is missing. When the data from the OTA and 

LCC1 is merged, there are a total of 24,696 possible unique observations, of which 21.5 

percent are missing.  

 Despite these limitations, to the best of our knowledge, this dataset represents the 

largest, dataset of detailed airline prices that is publically available and the only one that 

can be used to look competitive pricing of different types of low cost carrier competition. 

This database should provide new insights that will be of interest to researchers from 

economics, marketing, revenue management, pricing, and flight scheduling areas. 
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A.5. Conclusions 

To summarize, the datasets contain one-day round-trip fares for all outbound nonstop 

flights departing between September 2, 2010 and September 22, 2010 in a market that is 

served by at least one low cost carrier. A minimum booking horizon of four weeks for 

each departure date is included. The OTA fares represent the lowest available round-trip 

fare for a particular outbound flight for a trip that involves a one-night stay; the inbound 

flight that would be required to obtain this lowest fare is not known. The LCC1 fares 

represent an “equivalent round-trip” fare, which is the one-way fare multiplied by two. 

 This airline pricing database is unique in that it provides detailed daily pricing 

data that is not publicly available through government data sources such as T100 and 

DB1A/1B (which provide average fare information over a quarter). The datasets can be 

used to create simulated datasets for benchmarking the performance of RM systems, 

including those that incorporate information about competitor prices. The data can also 

be used to investigate the evolution of prices across a range of competition structures to 

answer questions related to which airline(s) are price leaders (e.g., who drops prices first 

and which airlines follow?). The data can be used to investigate how an airline’s pricing 

policies differ when facing various airline competitors and market structures. This data is 

also unique in that it provides detailed pricing information in a subset of markets where 

two or more low cost carriers offer nonstop flights, which can be used to investigate how 

low cost carriers compete over the booking horizon.   
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