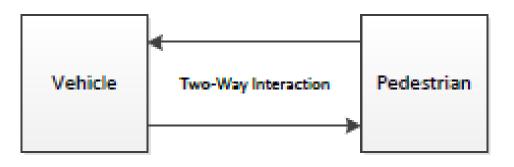


DRIVER YIELDING MODELS FOR MIDBLOCK PEDESTRIAN CROSSINGS

OBJECTIVE

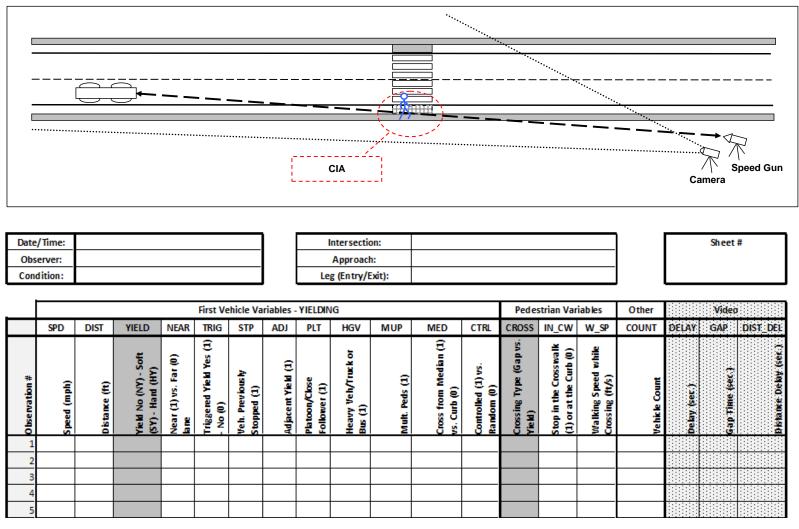
Using Statistical Models:


• Describe driver yielding behavior toward pedestrian(s) based on vehicle/driver and pedestrian variables

To address this objective, observational studies were conducted at midblock locations with clearly marked crosswalks.

FRAMEWORK

An interaction event between pedestrians and drivers begins at the moment a pedestrian reaches the crosswalk influence area while a driver is on the approach.


Both the pedestrian and the driver have decisions to make. The pedestrian may decide to accept a gap or wait for a vehicle to yield, while the driver must decide if they will, or if they even can, yield.

METHODOLOGY

Data Collection Process:

- Real-time observations by trained observer on a tally sheet
- Video recording of the crosswalk
- Lidar speed measurements of approaching vehicles

Validation:

- Pull one representative dataset from each state before creating models
- Determine which model gives better results

DATA COLLECTION

Characteristics of Sites and Pedestrian Population:

- On-campus and off-campus
- Geometry: single- or multi-lane with/without turn lanes, single- or two-stage crossing
- Land use: education, public office, parking
- User types: age, attire, gender, behavior

Equipment Used:

- Video camera and tripod
- Laser speed gun

actor	Description	Value
PD	The speed of the first vehicle (mph), at the time the pedestrian arrives at crosswalk influence area (waiting location), recorded from speed gun	Mph
DJDIST	Vehicle position at the time of pedestrian arrival in crosswalk influence area measured in feet using a LIDAR speed measurement device; ADJDIST is calculated from measured distance, speed, distance delay and Distance to Crosswalk; ADJDIST=DIST+SPD*1.467*DIST_DEL-Distance to Crosswalk	Ft
IELD	Whether the first vehicle yielded and if it was a hard or soft yield	No=NY, Soft= SY, Hard=HY
EAR	Whether the vehicle for which speed and distance was recorded (first vehicle) was in the lane nearest or farthest from the pedestrian	Near=1, Far=0
DJ	Whether there was a yield on the other side of the road (opposite direction) or a yield in an adjacent lane (same direction)	Adj. Yield=1
LT	If the first vehicle was in a platoon or had a close follower	Platoon=1
GV	First vehicle type: passenger car or heavy vehicle (bus or truck)	Heavy Vehicle=1
IUP	If there were other pedestrians present near the crosswalk; if any pedestrian is at either sides of the street or the splitter island and intends to cross	Multiple Pedestrian=1
IED	Whether the pedestrian crossed from the median or the curb	Median=1, Curb=0
TRL	Whether the crossing pedestrian was controlled (researcher) or random (observational study)	Controlled=1, Random=0
1_CW	Whether the pedestrian stopped in the crosswalk or at the curb. This variable shows the behavior of the pedestrian. A passive pedestrian is defined to wait at the curb for a crossing opportunity however an assertive pedestrian is defined to be waiting in the crosswalk or walking toward the crosswalk	Crosswalk=1, Curb=0
ГС	Time until vehicle would theoretically arrive at the crosswalk; TTC is calculated from the measured speed and distance at the time pedestrian arrives in the crosswalk influence area; TTC=ADJDIST/(SPD*1.467)	Seconds
ECEL	Deceleration rate necessary to come to a full stop prior to crosswalk; DECEL is calculated from measured speed and adjusted distance; DECEL=(SPD*SPD)/(2*ADJDIST)	Ft/s ²
TUDENT	Researcher's estimate of the pedestrian's age group	Student=1, Adult=0
ISTR	Whether the pedestrian was distracted by an outside source, such as a cell phone	Yes=1, No=0
USINESS	Researcher's observation of the pedestrian's attire or clothing	Business=1, Casual=0
EMALE	Pedestrian's gender	Female=1, Male=0

NC STATE UNIVERSITY

Elizabeth Hunter, Dr. Bastian Schroeder, Dr. Katy Salamati, Dr. Nagui Rouphail

Study Sites:

City	State	On/Off Campus
Raleigh	NC	3 On, 3 Off
Greensboro	NC	2 Off
Tuscaloosa	AL	4 On
Birmingham	AL	3 Off
Gainesville	FL	4 On, 6 Off

MODEL DEVELOPMENT

Model Development:

- Use observation data to create models
- Model types being considered:
 - Binary logit Single choice between Y and NY
 - Pseudo nested logit After Y is selected, single choice between HY and SY
 - "Flip-of-a-coin" based on group probabilities (not included in sample results)

SAMPLE RESULTS

Full Binary Logit Model

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
Intercept	1	1.8820	0.6443	8.5328	0.0038
SPD	1	-0.1846	0.0296	38.9600	<.000
ADJDIST	1	0.0107	0.00364	8.5578	0.0034
NEAR	1	0.5844	0.2121	7.5951	0.005
ADJ	1	1.0466	0.2983	12.3067	0.000
PLT	1	0.2567	0.1622	2.5037	0.113
HGV	1	-0.7799	0.3489	4.9960	0.025
MUP	1	1.0254	0.2346	19.1008	<.000
MED	1	1.4558	0.2614	31.0254	<.000
CTRL	1	-0.3252	0.2072	2.4648	0.116
ттс	1	-0.2036	0.0991	4.2207	0.0399
DECEL	1	-0.00168	0.0335	0.0025	0.960
STUDENT	1	0.5377	0.2315	5.3961	0.020
DISTR	1	0.2498	0.7270	0.1181	0.731
BUSINESS	1	-0.9817	0.3753	6.8441	0.008
FEMALE	1	-0.0104	0.1601	0.0042	0.9483

Recommended Binary Logit Model

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiS
Intercept	1	0.9432	0.3894	5.8656	0.015
SPD	1	-0.1435	0.0150	92.0423	<.000
ADJDIST	1	0.00418	0.00119	12.3099	0.000
NEAR	1	0.4824	0.1943	6.1651	0.013
ADJ	1	1.0006	0.2937	11.6085	0.000
HGV	1	-0.7919	0.3464	5.2261	0.022
MUP	1	1.1661	0.2117	30.3435	<.000
MED	1	1.3593	0.2449	30.8101	<.000
STUDENT	1	0.4905	0.2218	4.8881	0.027
BUSINESS	1	-0.8579	0.3707	5.3558	0.020

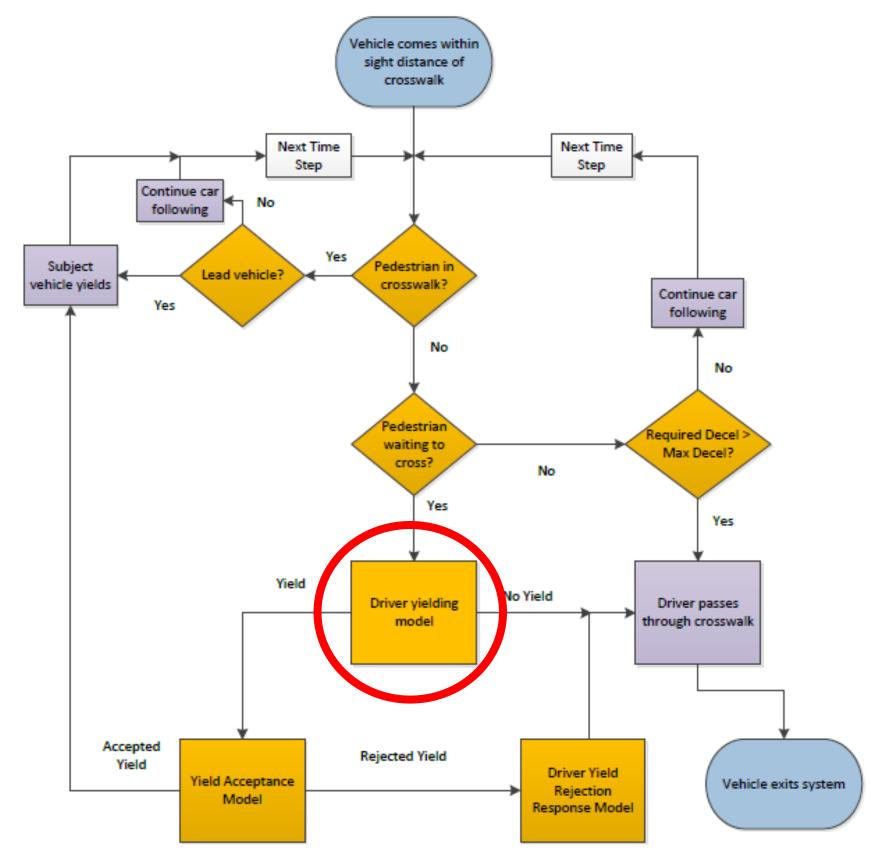
Pseudo Nested Logit Model

ALABAMA AT BIRMINGHAM

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-0.0760	0.4074	0.0348	0.8520	
ADJDIST	1	-0.0126	0.00236	28.6614	<.0001	
NEAR	1	-0.7733	0.2381	10.5463	0.0012	
ADJ	1	0.9601	0.3192	9.0464	0.0026	
MUP	1	1.3988	0.2542	30.2834	<.0001	
DECEL	1	0.3686	0.0816	20.3974	<.0001	

- Sample Size: 432 Yields, 543 Non-Yields
- Significant: SPD (-), ADJDIST (+), NEAR (+), ADJ (+), HGV (-), MUP (+), MED (+), TTC (-), STUDENT (+), BUSINESS (-)
- Forward selection and backward elimination models showed same variables to be significant
- Removed TTC since this variable was intercorrelated with ADJDIST
- STUDENT and **BUSINESS** have opposite sign, may show difference in driver behavior by location
- Significant: ADJDIST (-), NEAR (-), ADJ (+), MUP (+), DECEL (+)
- All Max-rescaled R² values between 0.33 and 0.35

NEXT STEPS


Next steps include:

- Validate model
- Determine if model needs further editing
- Choose final yielding model
- Compile discussion of modeling process for final report

IMPLEMENTATION

The driver yielding model, as well as a gap acceptance model, will be incorporated in algorithms ready to be implemented in microscopic traffic simulation tools to assure successful technology transfer.

Vehicle Process Flow:

ACKNOWLEDGEMENTS

"Empirically-Based Performance Assessment and Simulation of Pedestrian Behavior at Unsignalized Crossings" is a multiinstitution (NCSU/ITRE, UAB, UF) research project funded by STRIDE.

UF FLORIDA