

Automatic Pavement Crack Evaluation Using 3D Laser Data and Crack Fundamental Element Model

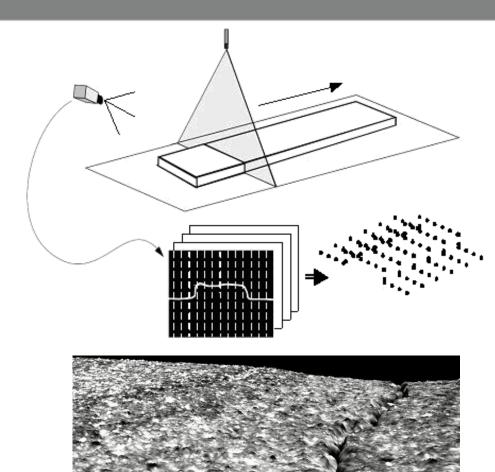
Yichang (James) Tsai **Zhaohua Wang (Presenter)** Chenglong Jiang

Georgia Institute of Technology

March 26, 2015

Outline

- Research objective
- 3D Line Laser Imaging Technology and Georgia Tech Sensing Vehicle
- GDOT pavement distress protocol
- Crack Fundamental Element (CFE) model
- Algorithms for automatic crack classification
- Case study
- Conclusions



Research Objective

- To validate the feasibility of applying the emerging 3D line laser imaging technology on automatic pavement crack evaluation
- To propose a multi-scale crack representation method using Crack Fundamental Element (CFE) model
- To propose an automatic crack classification method using GDOT distress protocol (PACES)

3D Line Laser Imaging Technology

Georgia De

- 1. Transverse direction : 1 mm
- 2. Elevation: 0.5 mm

3. Data points collected per second and width covered:

Geo

2 (lasers) * 2048 (points/profile/laser) * 5600 HZ = 22,937,600 points

2 (lasers) * 2048 (points/profile/laser) * 1 (mm) = 4.096 m

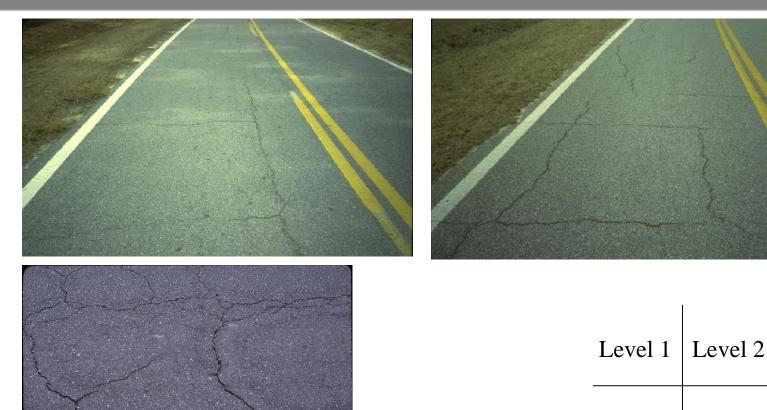
Georgia Tech Sensing Vehicle

GDOT Pavement Distress Protocol

- GDOT PACES (Pavement Condition Evaluation Systems) defines 10 types of distresses
 - Load cracking
 - Block cracking
 - Reflection cracking
 - Rutting
 - Corrugation/Pushing
 - Edge distress
 - Raveling
 - Bleeding/Flushing
 - Loss of section
 - Patches and Potholes

Need of Automatic Data Collection

- GDOT (similar to almost all other state DOTs) currently uses manual, visual survey
 - Time consuming
 - Subjective
 - Safety concern
 - Data completeness
- 3D line laser imaging data has great potential to automate the pavement distress data collection
 - Data collected in one run can be used to extract all the distress data
 - Advancement of signal processing and machine learning makes it possible
 - Cracking, rutting, raveling, and potholes have been studied

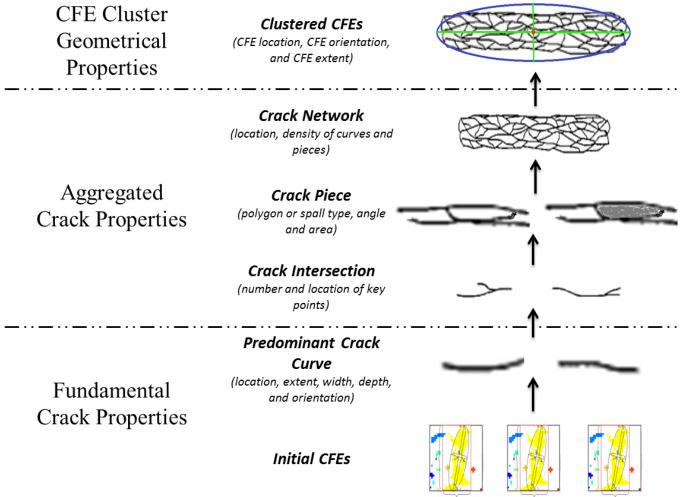

Load Cracking

Georgia Department of Transportation

Georgia Tech

Block Cracking

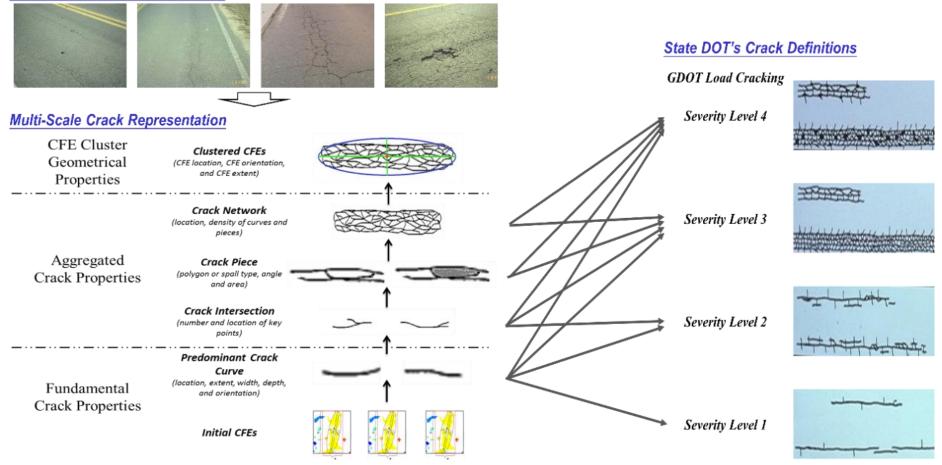
Level 3


Challenges of Crack Classification

- Features for crack classification
 - Location
 - Orientation
 - Length/density
 - Pattern
- Crack definition varies from agency to agency
 - Lack of a common crack presentation
 - Difficult to develop algorithms that are flexible and scalable

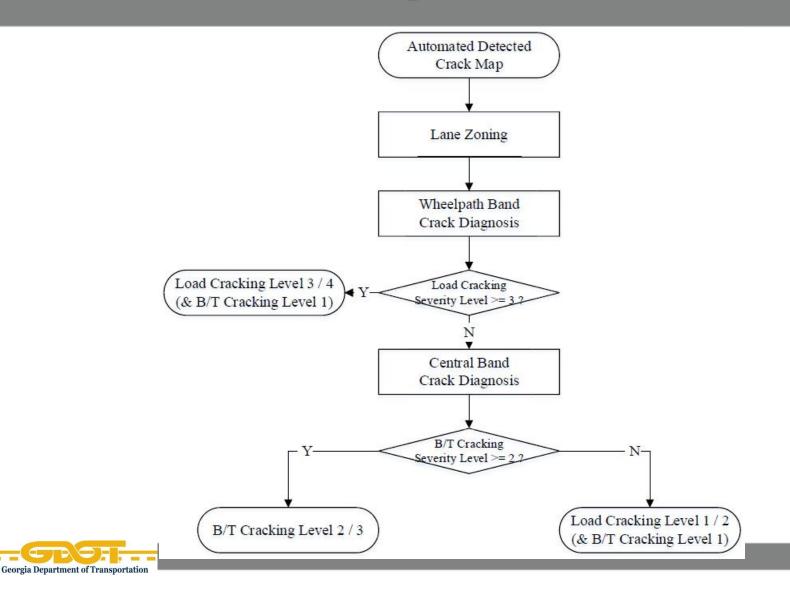
Crack Fundamental Element

Multi-scale Crack Presentation


- **Fundamental crack properties** focus on each crack segment and describe the fundamental and physical properties of cracks, such as crack location, length, width, orientation, etc.
- Aggregated crack properties focus more on crack patterns inside the clustered CFE and represent how cracks interact with each other, including intersections and polygons
- **CFE cluster geometrical properties** treat each CFE cluster as a whole and describe its overall properties. These geometrical properties are also used to cluster CFEs from low scale to high scale.

Using CFE in Agency's Protocol

Real-World Crack Characteristics



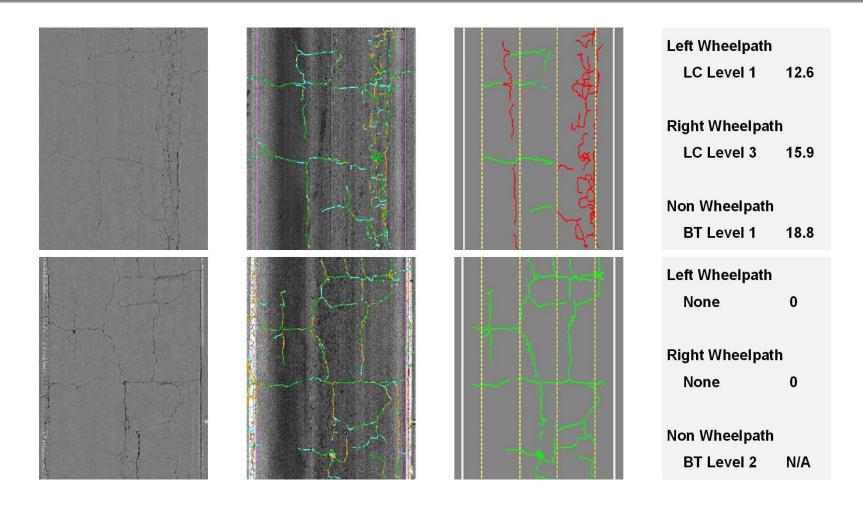
Load/Block Cracking Classification

-

Georgia Tech

	Length of longitudinal cracks				
Fundamental Crack Properties	Length of total cracks				
	Ratio of longitudinal to total length				
	Number of initial CFEs				
	Number of continuous crack lines				
	Average crack width	The features are			
	Maximum crack width	used as input for a machine learning			
	Number of crack intersect points	algorithm			
Aggregated Crack	Area of surface loss	8			
Properties	Crack distribution based on				
	orientations				
CFE Cluster	Length of clustered CFEs				
Geometrical Properties	Width of clustered CFEs				

Case Study

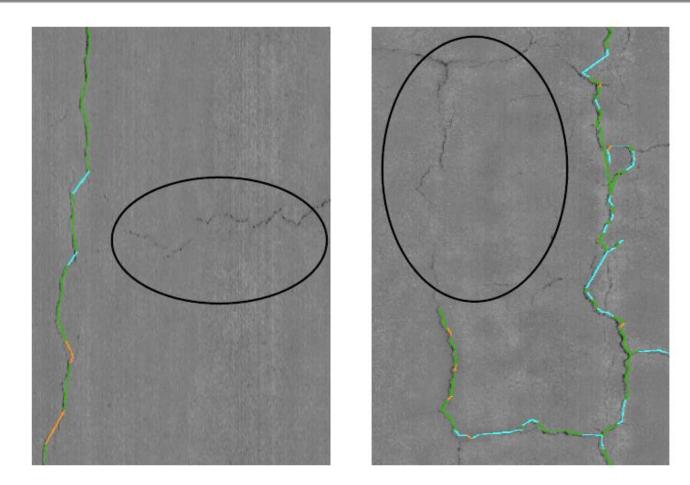

- Experimental tests are conducted on GA SR 236 to validate the proposed algorithm
- GDOT pavement maintenance liaison engineers help establish the ground truth through the validation process
 - Image-based in-house data collection
 - Field data collection on three 100-ft sections
- 70% of data was used for training dataset and the remaining 30% for testing

Testing Results (1)

Testing Results (2)

		Field Mea	surement	Automatic Evaluation		
		Extent(%)	Deduct	Extent(%)	Deduct	
Site #1	Load Lvl 1	56	15	48	15	
	B/T Lvl 1	100	18	100	18	
	Overall		33		33	
		Field Measurement		Automatic Evaluation		
		Extent(%)	Deduct	Extent(%)	Deduct	
Site #2	Load Lvl 1	30	10	25	9	
	Load Lvl 2	7	9	7	9	
	Load Lvl 4	11	29	7	22	
	B/T Lvl 1	99	18	100	18	
	Overall		47		40	
		Field Measurement		Automatic Evaluation		
Site #3		Extent(%)	Deduct	Extent(%)	Deduct	
	Load Lvl 1	41	13	27	9	
	Load Lvl 2	2	2	0	0	
	B/T Lvl 1	100	18	100	18	
	Overall		31		27	

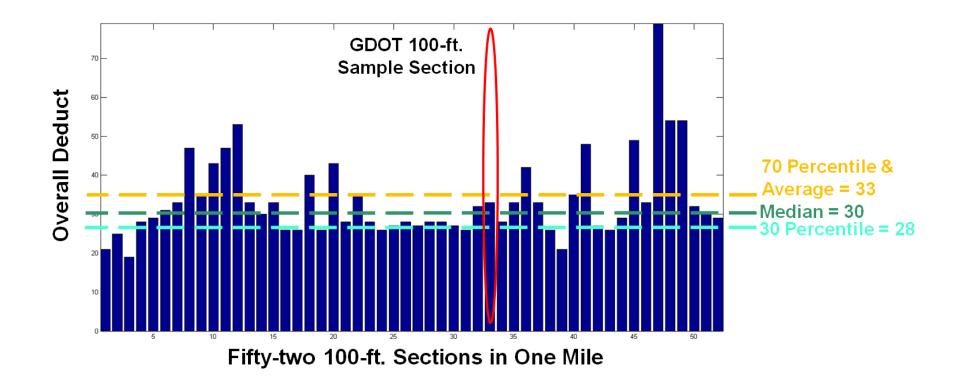
Note: the total deduct value is computed using the predominant deduct value for each crack type, following PACES.


Testing Results (3)

			Predicte	ed Level			
		None	Level 1	Level 2	Level 3&4	Total	Recall (%)
Actual Level	None	247	15	0	0	262	94.3
	Level 1	10	317	20	0	347	91.4
	Level 2	0	6	42	2	50	84.0
	Level 3&4	0	0	2	40	42	95.2
	Total	257	338	64	42	701	
	Precision (%)	96.1	93.8	65.6	95.2		92.2

Note: This is the image-base classification result.

Reasons for Inaccuracy



Georgia Tech

More Detailed Cracking Data

Conclusions

- A multi-scale crack analysis concept based on CFE model is proposed, which can be applied to:
 - Maintain the legacy of GDOT historical data and pavement management practice; and
 - Integrate with standardized crack measures, e.g. LTPP protocol for MEPDG calibration.
- An automatic crack classification method is developed for GDOT load cracking and B/T cracking. The proposed method and application are promising tools to transform the sensing data and crack detection outcomes into useful decision support information.
- A large-scale validation on the interstate highways is recommended for future implementation.

Thanks!

