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SUMMARY 

 

This research develops a framework to estimate the effective sample size of 

Global Positioning System (GPS) based panel surveys in urban travel behavior studies for 

a variety of planning purposes.  Recent advances in GPS monitoring technologies have 

made it possible to implement panel surveys with lengths of weeks, months or even 

years.  The many advantageous features of GPS-based panel surveys make such surveys 

attractive for travel behavior studies, but the higher cost of such surveys compared to 

conventional one-day or two-day paper diary surveys requires scrutiny at the sample size 

planning stage to ensure cost-effectiveness. Data collected from such surveys feature 

within-household correlations that arise from the panel design, and often non-normal 

distributions, both of which should be taken into account at the design and analysis 

stages. 

The sample size analysis in this dissertation focuses on three major aspects in 

travel behavior studies:  1) to obtain reliable means for key travel behavior variables,  2) 

to conduct regression analysis on key travel behavior variables against explanatory 

variables such as demographic characteristics and seasonal factors, and  3) to examine 

impacts of a policy measure on travel behavior through before-and-after studies.  The 

sample size analyses in this dissertation are based on the GPS data collected in the multi-

year Commute Atlanta study.  The sample size analysis with regard to obtaining reliable 

means for key travel behavior variables utilizes Monte Carlo re-sampling techniques to 

assess the trend of means against various sample size and survey length combinations.  
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The basis for the framework and methods of sample size estimation related to regression 

analysis and before-and-after studies are derived from various sample size procedures 

based on the generalized estimating equation (GEE) method.  These sample size 

procedures have been proposed for longitudinal studies in biomedical research.  This 

dissertation adapts these procedures to the design of panel surveys for urban travel 

behavior studies with the information made available from the Commute Atlanta study. 

The findings from this research indicate that the required sample sizes should be 

much larger than the sample sizes in existing GPS-based panel surveys.  This research 

recommends a desired range of sample sizes based on the objectives and survey lengths 

of urban travel behavior studies. 
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CHAPTER 1  

INTRODUCTION 

 

Estimating the minimum sample size is an important consideration in travel 

behavior studies.  For conventional one-day or two-day travel surveys, sample size 

procedures are well known and widely applied; see, for example, the Travel Survey 

Manual by Cambridge Systematics (1996).  The corresponding sample size procedures 

for Global Positioning System (GPS) based panel surveys, however, are less well 

developed.  The many advantageous features of GPS-based panel surveys, as will be 

explored in this dissertation, make such surveys attractive for travel behavior studies.  

However, the higher cost of GPS surveys compared to conventional one-day or two-day 

paper diary surveys requires scrutiny at the sample size planning stage to ensure cost-

effectiveness. 

The essence of the problem lies in the cost of travel behavior data collection for 

travel behavior studies for modeling and/or policy evaluation purposes.  The goal of 

sample size estimation is to collect data from sufficient numbers of households within 

well-controlled groups, where the travel behavior within each sampling group tends to be 

very similar to other households within the group and dissimilar to households in other 

control groups.  The basic idea is to break up the overall population into rational 

subgroups which are more homogeneous, so that fairly precise estimates of parameters in 

the subgroups should be obtainable (Mace, 1964).  However, in long-term panel surveys, 

the demographic characteristics that are often used to break up the overall population into 
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subgroups tend to change over time, posing significant challenges at the design and 

analysis stages.  In fact, the initial motivation for this work stemmed from the analysis of 

data collected during the Commute Atlanta Value Pricing Study where great 

demographic variability was observed (Xu, et al., 2009b).  The Commute Atlanta study 

was designed to assess the impact of mileage-based pricing incentives on travel behavior.  

The pricing experiment is implemented in different phases.  In Phase I of the study from 

October 2004 to June 2005, the research team collected baseline travel data and travel 

diaries from participating households for nearly two years.  In Phase II of the study from 

October 2005 to June 2006, the team implemented mileage-based in an effort to assess 

whether participating households would change their travel behavior in response to the 

pricing incentive.  The households were given 5 cents/mile from October to December, 

10 cents/mile from January to March, and 15 cents/mile from April to June.  The change 

in household vehicle activity during the pricing element of the study was performed by 

comparing the before and after mileage levels in participating households for which valid 

baseline and pricing data were collected (95 households).  The total vehicle miles of 

travel (VMT) for these households decreased by about 3% over the 9-month pricing 

period, compared to the baseline travel year.  However, the noted reduction was not 

statistically significant due to the tremendous variability observed in household-to-

household change in travel.  Additionally, the travel patterns varied significantly day-to-

day and month-to-month within each household.  Furthermore, the demographics within 

these households changed considerably over time.  Nearly 70% of the households 

experience one or more changes in their demographic characteristics between October 

2004 and June 2006.  Among these households, 35% experienced only vehicle ownership 
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changes, which may or may not significantly impact travel behavior.  The remainder 

experienced changes in household location, work location, employment status, income, 

household size, or other critical demographic variables, which most certainly impact 

travel behavior.  The large variability observed in the Commute Atlanta study has raised 

the question about the adequate sample size for longitudinal surveys for travel response 

evaluations. 

The primary goal of this research is develop a framework for sample size 

estimation that is specifically suitable for GPS-based urban panel travel behavior surveys.  

The key to success in this endeavor is to appropriately accommodate the longitudinal 

nature of the data, which will be explained and emphasized throughout this dissertation.  

Another challenge in sample size estimation for travel behavior studies is the violation of 

the normality assumption, as often seen in key travel behavior variables such as number 

of trips and daily or monthly VMT.  This research aims to examine sample size 

requirements in situations where data are correlated and non-normally distributed. 

The basis for the framework and methods developed in this dissertation are 

derived from the biomedical field.  Liang and Zeger (1986) proposed the generalized 

estimating equation (GEE) method for the analysis of longitudinal data.  Based on the 

GEE procedures, Liu and Liang (1997) developed algorithms to estimate sample size 

requirements for continuous and binary data.  Later, Rochon (1998) prescribed a general 

methodology applicable in a wide variety of situations for continuous, binary and 

Poisson-distributed data. 

To adapt the above mentioned procedures to travel behavior studies requires 

knowledge of the unique features of travel behavior data.  The unprecedented multi-year 
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continuous monitoring period of the Commute Atlanta study provides an excellent 

opportunity to gain such knowledge.  Even though the analyses conducted in this 

dissertation will be limited to only the information available from a continuous small 

sample (95 household over two and a half years), the framework that can be developed 

using these data will prove useful in future panel studies. 

1.1. Research Objectives 

The sample size analysis in this dissertation focuses on three major uses of the 

data in travel behavior studies:  1) to obtain reliable means for key travel behavior 

variables,  2) to conduct regression analysis on key travel behavior variables against 

explanatory variables such as demographic characteristics and temporal factors, and  3) to 

examine the impacts of a policy measure and/or a change on travel behavior through 

before-and-after studies. 

The objectives of this dissertation can be outlined as follows: 

• Differentiate the between-household (cross-sectional) and within-household 

(longitudinal) information in household travel behavior 

• Review the desirability of GPS-based panel studies for travel behavior studies 

including travel demand modeling and policy evaluation 

• Characterize the variability of travel behavior associated with natural temporal 

rhythms and demographic characteristics 

• Provide insight into the demographic instability within households and its 

implications on the design and analysis of travel behavior studies 

• Examine the sampling distributions of the means of key travel behavior variables 

given various combinations of sample sizes and survey lengths 
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• Adapt GEE procedures to the analysis of GPS-based panel data for travel 

behavior studies 

• Explore the distributional properties and correlation structures of key travel 

behavior variables 

• Apply GEE procedures to the regression analyses of intra-regional and long-

distance travel as the basis for sample size estimation for such analyses 

• Develop a framework for sample size analysis in before-and-after studies in the 

transportation field 

• Recommend a desired range of sample sizes based on objectives and lengths of 

longitudinal travel studies 

1.2. Research Methodology 

The objectives of this dissertation will be achieved by the following 

methodological approaches. 

1.2.1. Data Collection and Processing 

The analyses in this dissertation are based on data collected in the Commute 

Atlanta study.  A detailed description of the Commute Atlanta study can be found in (Li, 

2004) and (Ogle, 2005).  The main objective of the Commute Atlanta study is to assess 

the effects of converting fixed automotive costs into variable driving costs.  At the 

beginning of the study in 2003, the research team installed 487 GPS trip collectors in the 

vehicles of 268 participating households to collect second-by-second vehicle activity 

data.  The Commute Atlanta study included the parallel collection of instrumented 
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vehicle data, household socio-demographic surveys, and employer commute options 

surveys.   

This dissertation utilizes the trip data collected from 95 households that stayed in 

the study from January 2004 to June 2006.  In addition to the trip information collected 

by the in-vehicle GPS devices, this dissertation derives detailed household demographic 

information from the combination of household mail-in surveys and visualized household 

travel patterns such as trip-end frequencies.  Households do not always report changes in 

their demographic information promptly, if at all, so the use of visualized travel patterns 

proves very useful in detecting changes within a household.  The information about 

changes in demographic characteristics in turn benefits the analysis and understanding of 

household travel behavior.  In travel demand forecasting, understanding the association 

between changes in household characteristics and changes in travel behavior can help 

planners predict long-term travel trends in the context of overall demographic trends such 

as population aging.  In policy evaluation, household demographic changes need to be 

controlled for to establish a causal relationship between policy measures and changes in 

travel behavior.  The roles of household demographic changes in travel demand 

forecasting and before-and-after policy studies will be discussed in detail in the 

subsequent chapters. 

1.2.2. Descriptive Analysis 

This research conducts extensive descriptive analysis of intra-regional and long-

distance travel to provide insight into the longitudinal nature of panel data.  The 

descriptive analysis will differentiate between-household and within-household 

information.  The analysis is carried out in three aspects:  1) the general association 
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between travel behavior and temporal and demographic factors, 2) the demographic 

changes that arise in a panel setting and their impacts on travel behavior, and  3) the trend 

of means as sample size and survey length vary.  The bootstrap technique (Efron and 

Tibshirani, 1993; Davison and Hinkley, 1997) is applied widely in the descriptive 

analysis to accommodate the non-normal distribution of the data. 

1.2.3. Generalized Estimating Equation (GEE) Procedures 

The GEE approach is the formal statistical approach this dissertation adopts for 

relating sample size requirements to regression analysis and before-and-after studies.  To 

implement the GEE procedures, the data distributions and correlation structures will be 

examined.  The sample size estimation related to regression analysis is carried out by 

examining the changes in the significance of regression coefficients as sample size and 

survey length vary.  The sample size estimation related to before-and-after studies is 

implemented by adapting existing algorithms that are applied in biomedical research to 

travel behavior studies. 

1.3. Research Contributions 

This research will fill a few gaps in the literature.  First, with the growing 

popularity of longitudinal travel surveys, there is not much attention dedicated to sample 

size estimation.  The researchers and practitioners tend to adopt sample size estimation 

methods suited for cross-sectional surveys and use these methods in panel surveys.  This 

research will discuss and emphasize the significant difference in sample size 

requirements between traditional cross-sectional surveys and GPS-based panel surveys.   

Second, the capabilities of GPS-based panel surveys to evaluate various 

transportation policies have not been fully explored.  The transportation community has 
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not characterized differences between the longitudinal and cross-sectional information 

available from panel data.  This research will adapt GEE procedures which are widely 

applied in biomedical research to the analysis of longitudinal travel data. 

Third, the magnitude of variability in the variables of interest (e.g. number of 

trips, VMT, etc) is also often overlooked in the literature.  The temporal aspect of GPS-

based panel surveys adds significant variability to what has been observed in cross-

sectional data.  The added variability mainly comes from the natural temporal rhythms of 

travel and the dynamic changes in households.  This research will examine the patterns of 

variability, with special scrutiny to handle changes in confounding factors. 

The sample size estimation methodology that the research aims to develop will 

take into account the policy objectives that a survey serves and the variability unique to 

longitudinal surveys resulting from temporal rhythms and dynamic changes.  The 

estimated sample size requirement will be a function of study objectives and variability 

patterns. 

To summarize, this research anticipates the following contributions: 

• Assess the advantages of longitudinal travel behavior studies over traditional 

cross-sectional studies for travel behavior evaluation 

• Better understand how intrinsic variability in the travel attributes of interest 

impacts transportation policy assessment 

• Depict the sampling distributions of means for key travel behavior variables given 

a longitudinal design 

• Develop a methodology to estimate sample size and the length of study 

combinations for longitudinal travel studies with regard to regression analysis 
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• Formulate guidelines for sample sizes pertaining to policy objectives of before-

and-after studies 

Even though the guidelines resulting from this research may have limited 

transferability to other metropolitan areas than Atlanta, the methodology will be 

applicable to a more generalized setting.  The methodologies and results from this study 

should be further validated and updated with data from other regions as such data become 

available. 

1.4. Dissertation Outline 

Following this introductory chapter, Chapter 2 summarizes the literature that 

characterizes GPS-based panel surveys, reviews the desirability of such surveys in travel 

behavior studies, and states the need for comprehensive research on sample size 

requirements for such surveys.  Chapter 3 describes the data collection and processing 

efforts of this dissertation.  Chapter 4 conducts exploratory analysis that reveals the 

association between travel behavior and temporal and demographic factors.  Chapter 5 

elaborates on the impact of demographic characteristics on travel behavior with special 

attention to demographic instability.  Chapter 6 examines the trends of means of key 

travel behavior variables with varying sample sizes and survey lengths.  Together, 

Chapters 4 to 6 provide descriptive analysis on the general information of travel behavior 

made available by panel data.  Chapter 7 begins to set the stage for the GEE procedures 

that will be applied in the rest of the dissertation by formally introducing the statistical 

approach.  Chapter 8 explores the distributional properties and correlation structures of 

travel data as a preparation for implementing the GEE procedures.  Chapter 9 relates 

sample size analysis to regression analysis.  Chapter 10 develops a framework for before-
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and-after studies in the context of policy evaluation.  Finally, Chapter 11 summarizes the 

research findings and suggests directions for future research. 
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CHAPTER 2  

LITERATURE REVIEW 

 

This section will first review the definitions, examples, and advantages of GPS-

based panel surveys.  Then the potential applications of such surveys in various aspects 

of transportation planning, including activity-based models and transportation policy 

studies, will be discussed at length.  The final part of this section documents the need for 

further research on sample size requirements based upon the limited sample size studies 

that currently exist in the transportation field. 

2.1. GPS-Based Panel Surveys 

2.1.1. Definitions 

Panel surveys can be defined as surveys of the same survey units at different 

times, measuring the same characteristics (Markus, 1979).  In the literature, the terms 

“panel” and “longitudinal” are often used interchangeably.  To clarify the exact definition 

of the surveys that this research is going to investigate, it is worthwhile to first compare 

panel data that arise from a panel survey to two other types of data: cross-sectional and 

time series. 

The difference between a panel survey and a cross-sectional survey is that a panel 

survey has at least two repetitions on the same survey subjects - i.e. households, in most 

cases - whereas a cross-sectional survey conducts the survey only one time.  It is also 

worthwhile to compare the data generated from a panel survey, namely, panel data, to a 
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time series.  With respect to a time series, observations are usually taken on a single 

subject (household, individual, vehicle, etc) at a relatively large number of time points.  

Panel data include observations on many subjects at a relatively small number of time 

points (Markus, 1979).  Moreover, the unit of analysis is the time point in time series 

analysis (Ostrom, 1978), while the unit of analysis is the household, individual, or vehicle 

in panel analysis.  Table 2.1 summarizes the differences and similarities among these 

three types of data. 

 
 

Table 2.1 Comparison of Panel Data, Cross-Sectional Data, and Time Series 
 Unit of Analysis Number of 

Subjects 
Number of 
Repetitions 

Panel data Household/individual/vehicle Many Relatively small
Cross-sectional data Household/individual/vehicle Many One 
Time series Time point One Relatively large 

 
 
 

Continuous GPS-based panel surveys do not fall under the above strict definition 

of panel surveys.  Strictly speaking, panel surveys observe a few discrete points in time, 

as shown in Figure 2.1b.  Each survey time point is referred to as a “wave” (Yee and 

Niemeier, 1996).  However, GPS-based panel surveys often monitor travel behavior 

continuously, as shown in Figure 2.1c.  In this case, it is useful to conceive of each wave 

as a continuous multi-day or multi-month survey.  From the data analysis point of view, 

the entire panel data can be conceived of as a large number of time series - one for each 

household (Markus, 1979).  In biomedical research, panel studies are often referred to as 

longitudinal studies (Diggle, et al., 2002).  In this dissertation, the terms “panel” and 

“longitudinal” will be used interchangeably. 
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Figure 2.1 Comparison of Cross-Sectional Data, Traditional Panel Data, and GPS-Based 

Panel Data  
Adapted from Blossfeld and Rohwer (2002) 

 
 
 

In GPS survey efforts, researchers monitor trip origins, destinations, and real-time 

vehicle position using GPS tracking devices and collect supplemental travel surveys data.  

This research utilizes travel data collected through passive in-vehicle monitoring 

technology, where position data are collected by GPS systems without any information 

input by the drivers (Lee-Gosselin, 2002).  GPS-based surveys are useful for exact time 

and destination recording and capture of trip underreporting (Wolf, et al., 2003; 

Schönfelder, et al., 2006).   
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2.1.2. Examples 

This section focuses on the panel studies in the transportation field that are 

designed to evaluated mileage-based value pricing policies.  These examples are panel 

surveys with multi-day observation periods using in-vehicle tracking technologies. 

• Minnesota Mileage-Based User Fee Demonstration Project - This “Pay-As-You-

Drive” (PAYD) pilot project simulated the conversion of vehicle lease and/or 

insurance pricing from traditional fixed payments to payments based on actual 

miles driven.  In this study, personal vehicles of 130 participants had car chip 

technology installed for around one year.  The car chip measures time, speed, and 

distance of travel, but is unable to track locations.  The results from this project 

support the notion that some drivers will reduce mileage in response to price 

signals, although the range of responses, variability of the data, small sample size, 

short experiment period, and lack of negative consequences make it difficult to 

come to definitive conclusions (Buxbaum, 2008).  To account for the small 

sample size, the study adopts a disaggregate method using a matching method that 

matched members of the treatment group to those of the control group based on 

the probability of participation in the experiment and their baseline mileage 

(Abou-Zeid, et al., 2008).  However, given the large variability in demographic 

characteristics across households, it is unlikely that the matching method could 

ensure meaningful comparisons of travel behavior across households. 

 

• The Oregon Road User Fee Pilot Program - The pilot test is designed to 

demonstrate the technical and administrative feasibility of implementing an 
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electronic collection system for mileage-based user fees and congestion tolls.  In 

the spring of 2006, 260 trial participants in Portland, Oregon, had the on-board 

equipment added to their vehicles.  For a period of one year, participants paid 

mileage-based charges rather than the fuels tax.  When the participants filled up at 

gas stations, the fuel tax was deducted from the bill and the mileage charge was 

added.  The charges were calculated according to VMT by zone and by time using 

in-vehicle GPS-based tracking device.  The study of the results from this program 

reported reduction in VMT in response to price differential (Rufolo and Kimpel, 

2008).  However, the small sample size, especially the control group of only 27 

vehicles, does not lead to the strong conclusions offered by this paper.  The study 

did not investigate factors such as household demographic characteristics, 

seasonal effects and gas prices before drawing conclusions. 

 

• Washington Traffic Choice Study - In this pilot study, in-vehicle GPS-based 

tolling devices with cellular communication capabilities were placed in the 

vehicles of voluntary participants.  Different prices per mile were imposed 

depending upon the location and time of travel.  More than 400 vehicles from 275 

plus households participated in the study for up to 18 months.  The preliminary 

results show a 7% reduction in total VMT of all participants (Puget Sound 

Regional Council, 2008).  Similar to other projects mentioned above, this 

preliminary analysis did not factor in the demographic characteristics of the 

participants nor gas price fluctuations. 
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In reviewing the studies reported above, it becomes clear that it is difficult to 

separate the impact of the mileage-based pricing policy from the large variability in 

household travel behavior, when analyses are performed at the aggregate level.  The 

impact of households’ demographics, including their changes, and other exogenous 

factors that impact travel choices were seldom addressed in the literature.  The 

aforementioned studies suffer from the large amount of variability and the arguably small 

sample sizes, therefore failing to achieve the objective of policy evaluation. 

The magnitude of variability in household travel behavior revealed from the 

Commute Atlanta study (Xu, et al., 2009a) further indicates that that much larger sample 

sizes and improved survey design will be required in longitudinal studies to ascertain 

how pricing affects travel behavior.  There is both natural within-household variability as 

well as some potentially extreme variability resulting from demographic changes during 

panel studies.  Significantly larger samples (much larger numbers of participating 

households within each demographic stratum, and much larger samples than those seen in 

other relevant studies reported in the literature) need to be coupled with more-intensive 

continuous surveys.  Experimental controls over households that use their vehicles for 

business purposes also need to be introduced, possibly as a separate recruitment stratum 

(Elango, et al., 2007).  Accessibility to viable commuter transit is also an essential control 

variable in future studies, as households that have viable transit access maybe much more 

likely to respond to economic incentives. 
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2.1.3. Advantages of GPS-Based Surveys 

2.1.3.1. Trip Under-Reporting and Non-Response 

GPS-based surveys can recover unreported trips and activities, as the GPS devices 

automatically log all routes.  Previous studies have documented the benefits of GPS-

based surveys in revealing under-reported activities and trips; for example, (Wolf et al., 

2003; Zmud and Wolf, 2003; Bricka and Bhat, 2008).  As Ogle, et al. (2006) pointed out, 

in paper-based travel diaries, participants under report trips and activities by as much as 

30%, either because they forget some trips, or because they intentionally do so to shorten 

the time to fill out the diary or to answer the interview.   

GPS-based surveys have also revealed the non-response issue in travel surveys.  

The Commute Atlanta study has revealed that households that have more than 16 trips 

per day or ones that have no trips at all tend to be more likely not to respond the survey 

(Ogle, et al., 2005), indicating that the omitted trips are also not random in nature, i.e. 

there appears to be systematic under-reporting by trip making patterns. 

2.1.3.2. Extended Monitoring Period 

GPS-based surveys can provide continuous observations of over a week, a month, 

or even longer (Zumkeller, et al., 2006).  Several pilot GPS-based travel studies all have 

continuous monitoring periods ranging from one to two years.  Table 2.2 summarizes the 

lengths of monitoring period of GPS-based surveys used in policy studies in the US.  The 

extended monitoring period enabled by the GPS technology will benefit travel demand 

modeling in numerous ways as discussed below. 
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Table 2.2 Long-Term GPS-Based Surveys for Policy Analysis 
Location Start 

Year 
Continuous 
Monitoring 

Period 

Technology 
Type 

Sample Size Policy Areas 

Atlanta, GA (Xu, 
et al., 2009a) 

2004 Two and a half
years 

In-vehicle 268 households recruited, 
95 usable for pricing study 

Mileage-based 
pricing, safety, 

emissions 

Twin Cities, MN 
(Abou-Zeid, et 

al., 2008) 

2004 One year In-vehicle 130 households Mileage-based 
pricing 

Oregon (Rufolo 
and Kimpel, 

2008) 

2006 One year In-vehicle 201 households recruited, 
168 households and 207 

vehicles usable 

Mileage-based 
pricing 

Puget Sound, WA 
(Puget Sound 

Regional Council, 
2008) 

2002 Eighteen 
months 

In-vehicle 275 households, 400 
vehicles 

Variable road tolling

 
 

Potential to Decrease Sample Size 

Longitudinal surveys, in which each participant is monitored for an extended 

period of time, can provide very useful information with a smaller sample size than cross-

sectional surveys, thanks to the greater statistical reliability that these surveys can achieve 

(Moser and Kalton, 1971).  Even with an equivalent number of respondents, longitudinal 

surveys may prove cheaper than cross-sectional surveys in the long run, even though 

initially these surveys are a higher resource undertaking (Murakami, et al., 2006).  For 

example, Stopher, et al. (2008b) examined the sample size benefits of using a multi-day 

survey to measure distance traveled, number of trips and total travel time.  However, such 

potential to reduce overall cost has to be examined rigorously, due to the much higher 

cost per correspondent, including equipment, data storage and processing, and statistical 

analysis. As well explained by Stopher (2008a), as the length of continuous monitoring 

period increases, the variability in observed travel patterns increases, requiring a larger 
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sample size to allow good destination choice models to be developed.   Because there is 

little experience to date with using multi-day data for model estimation, the sample size 

estimation is as yet an issue that is open for new research and exploration.  

Potential to Identify Needed Increases in Sample Strata 

Because GPS-based survey data provide more accurate and detailed information 

for an extended period, they enable researchers to gain insights into variability in 

household travel behavior and into changes in travel behavior over time that are not 

available in a conventional cross-sectional paper-based diary survey.  The unique travel 

patterns of certain demographic groups, revealed through GPS-based survey data, can 

identify the need to add sample strata and/or include more variables during population 

synthesis in activity-based models.  For example, based on the GPS data collected in the 

Commute Atlanta study, Elango, et al. (2007) noted that vehicles identified by 

participants as being used “always” or “occasionally” for business/commercial purposes 

undertake very different travel patterns than other vehicles.  Households that include 

commercial vehicles also tend to have a much higher trip rates than those without, all 

other major demographic characteristics being equal.  Therefore, without special 

weighting procedures, the presence of commercial-use vehicles in the sample can 

significantly bias analytical results (and most travel diary surveys do not currently 

explicitly control for the presence of such vehicles). The Georgia Tech researchers have 

previously argued that households with commercial vehicles must be treated as an 

independent sample strata in future travel diary data collection and travel demand 

analysis (Elango, et al., 2007).  
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 Benefits for Travel Demand Analysis 

Extended monitoring periods can also improve travel demand analysis.  

Intuitively, population aging, demographic changes and temporal variability influence 

travel behavior, but these factors are often inadequately addressed in travel demand 

models due to insufficient data.   To establish causality and estimating pricing elasticity, 

policy evaluation studies also need to include travel surveys with extended monitoring 

periods. 

2.1.3.3. Improved Accuracy 

In conventional paper-based travel diary surveys, respondents have to remember 

the locations and times of trip origins and destinations.  In GPS-based surveys, however, 

trip origin, destination and route data are automatically collected without burdening the 

respondent (Kochan, et al., 2008).  In a recent demonstration of GPS-based travel diary 

surveys conducted by the University of Minnesota and Vehicle Monitoring Technologies, 

Inc., 43 university commuters completed travel diaries at a 94% completion rate, and 

even provided travel data for more than twice the number of days as requested, 

presumably because the surveys were interesting to complete (Elango and Guensler, 

2010).  Therefore, GPS-based surveys can be used to gather much more exact activity 

durations, and data for every segment of a vehicle tour.  Such information is crucial for 

activity-based models.  Furthermore, the GPS tracking technology has provided the 

possibility to analyze route choices and trip-chaining behaviors that have never been 

available before (Stopher, 2008b).  For example, Li et al. (Li, et al., 2005) examined 

morning commute route choice patterns using GPS data and found a strong relationship 

between the morning commute trip-chaining decision (single vs. multiple routes) and 
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work schedule flexibility as well as commuters’ socio-demographic characteristics and 

commute route attributes. 

2.2. Potential Applications of GPS-Based Panel Surveys in Travel Demand 

Forecasting  

2.2.1. Activity-Based Models  

In recent years, MPOs in the US have demonstrated increasing interest in moving 

from conventional four-step models towards activity-based models.  Currently, San 

Francisco, New York, Sacramento, and Lake Tahoe have developed activity-based 

models, while such models for Portland, Atlanta, and Denver are under development.  

Many more cities, such as Boston, are planning to convert their four-step models to 

activity-based models in the near future.  This section examines existing urban activity-

based models in the US, including: Portland (METRO), San Francisco (SFCTA), New 

York Best Practice Model, Columbus (MORPC), Atlanta (ARC), San Francisco Bay 

Area (MTC), Denver (DRCOG), and Lake Tahoe.  First, the data sources for these 

models are compiled, revealing that the MPOs have not taken full advantage of GPS-

based panel data.  Next, the features of these activity-based models are summarized, 

indicating the need for better resolution in survey data for the purpose of establishing 

long-term causal relationships.  Lastly, the aspects in which GPS-based panel surveys can 

contribute to improving activity-based models are summarized. 

2.2.1.1. Data Sources 

Household travel surveys serve as the basis for model estimation.  Table 2.3 

summarizes the travel survey data that support current activity-based models.  Figure 2.2 
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zooms in on the months of the year that each survey covered.  A few patterns emerge 

from the table and the chart. 

 
 

Table 2.3 Household Travel Surveys that Support Activity-Based Models 

  
Portland  San 

Francisco 
New 
York  

Columbus Atlanta Sacramento  Bay 
Area  

Denver Lake 
Tahoe

Survey Year 1994-
1995 

1990 1997-
1998 

1999 2001-
2002 

2000  2000-
2001 

 1997 2005 

Number of 
Days 
Monitored 

2 1, 3, 5 1  1 2 1 2 1 1 

Number of 
Households 
Sampled 

5,000 1,500* 11,264 5,433 8,609 3,492 15,000 4,196 1,220 

Base Year 
Population 
(million) 

1.4 0.75* 111 1.5 4.7 2 6.8 2.2 0.63 

Survey 
Instrument 

Diary Trip 
memory 
jogger 

Diary Diary  Diary Diary Diary Diary Diary 

Weekend 
Travel 

 Yes, 
entire 

sample 

No  275 
house-
holds 

 No Yes, 
entire 

sample

No Yes, 
entire 

sample 

No No 

GPS 
Component 

 No No  No  No No  No No No No 

* SF residents only 
 
 
 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Portland   
San Francisco           

New York        
Columbus          
Atlanta   
Sacramento          
SF Bay Area   
Denver            
Lake Tahoe           

Figure 2.2 Months of a Year the Surveys Covered 

                                                 
1 Not documented in survey reports.  This number is an approximation by the population of the New York 
Metropolitan Transportation Council region published on http://www.nymtc.org/. 
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The surveys employed in the development of current activity-based models were 

primarily conducted in the 1990s and do not include a GPS component.  The travel 

surveys have very limited continuous monitoring period.  The longest is the 1990 San 

Francisco Bay Area travel behavior study that has three and five-day surveys.  All other 

surveys only have one or two-day monitoring periods. 

Five out of the nine surveys do not include weekend travel.  Among the four 

surveys that did include weekend travel, the New York survey restricted the weekend 

sample to 275 households in the North Jersey Transportation Planning Authority 

(NJTPA) counties of northern New Jersey (Parsons Brinckerhoff Quade & Douglas, 

2000). 

Only the Portland, Atlanta, and San Francisco Bay Area surveys covered an entire 

year.  Therefore, surveys in the other regions cannot reflect seasonal fluctuations of travel 

behavior.  Furthermore, even though these three surveys lasted for a year or more, none 

of them tracked the same households continuously for that period.  Hence, even these 

data cannot be used to isolate seasonal fluctuations in travel behavior as a function of 

demographic variability.  Understanding this variability is important in assessing policies 

that affect general rather than one-day behavior, e.g. to assess the distribution of user 

charges for road pricing, or patterns of public transportation usage (Jones and Clarke, 

1988).  

2.2.1.2. Features of Activity-Based Models 

Current activity-based models consist of the following structure, with a hierarchy 

of levels from “top” to “bottom”, where the lower-level choices predicted are conditional 

on higher-level choices (Bradley and Bowman, 2006; Davidson, et al., 2007): 
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• Long-term level 

o Population synthesis 

o Auto ownership 

o Work and school locations 

• Person/household-day level: number of tours and activities by purpose 

• Tour-level 

o Main destination and mode 

o Begin/end times 

o Number of stops 

• Trip-level 

o Intermediate stop location 

o The mode and departure time of each trip 

 

Bradley and Bowman (2006) and Cambridge Systematics (2008) provide detailed 

summaries of the technical information of these models, including the model structure 

and variables included in each model component.  PB Consult (2005) compared the 

different features between trip-based models and activity-based models.  These reviews 

reveal that, compared to conventional trip-based models, activity-based models forecast 

travel behavior at a higher resolution for several aspects.  Arguably, travel survey data 

need to provide high resolution observations with respect to the corresponding aspects.  

The areas in which activity-based models provide more details include: 
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• Improved Use of Household Demographic Characteristics 

Activity-based models predict basic travel decisions in a more 

disaggregate fashion than trip-based models.  The demographic variables in 

aggregate trip-based models are limited to the predetermined dimensions that 

were used in the functional model segmentation (Davidson, et al., 2007).  With 

explicit micro-simulation of synthetic households and persons, activity-based 

models allow for the analyses of detailed population subgroups, such as ethnic 

groups or people with disabilities, and demographic changes, such as employment 

status and life-cycle stage changes (provided that the synthetic household 

population accurately reflects the regional demographic structures and inter-

relationships of demographic variables).  

• Spatial Structure 

In activity-based models, the micro-simulation framework is not tied as 

strongly to zone definitions, making it possible to specify variables related to land 

use, parking, and walk access (which do not need to be stored as matrices) at a 

finer level. According to Bradley and Bowman (2006), the Portland model uses 

such an approach for roughly 20,000 “blocks”, while the Sacramento models 

employ more than 700,000 parcels.  

• Time-of-Day Modeling 

Most conventional trip-based models cannot incorporate disaggregate 

time-of-day travel decisions unless they are calibrated for specific time periods.  

Most trip-based models predict daily trips, and the more refined models only use 

peak and off-peak periods.  For example, the current trip-based model in Atlanta 
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divides a day into four time periods.  The activity-based models, however, have 

the capability of modeling travel behavior at a resolution of 30-minute intervals, 

e.g. the Sacramento, CA model (Kuppam, et al., 2008). The advantages of the 

activity-based approach to modeling time-of-day choice decisions are analyzed in 

detail by Vovsha and Bradley (2004; 2006), and Vovsha, et al. (2005).  The main 

constraint on how small the time periods can be is the sample size and adequacy 

of the self-reported times in the diary survey data, because there is evidence that 

people often round clock times to 10, 15 or 30 minute intervals (Bradley and 

Bowman, 2006). 

• Trip-Chaining Behavior 

Trip-based models often do not model trip-chaining behavior (PB Consult 

Inc. and The Gallop Corporation, 2005).  Because activity-based models 

conceptualize the tour as the analytical unit to construct daily activity patterns, 

trip-chain modeling is essential to these more advanced models.  The accuracy 

and consistency in trip-chain modeling may improve overall model advancement 

(Ye, et al., 2007).   

• Household Joint Activity and Travel 

Some activity-based models (e.g. Columbus, Atlanta, and San Francisco 

Bay Area) explicitly treat the linkages between the predicted activities and travel 

of different household members.  Such treatment takes full advantage of the 

micro-simulation approach in terms of its ability to reduce aggregation bias 

(Bradley and Bowman, 2006).  A constraint on this modeling capability is the 

under-reporting of short trips and very young passengers (less than 5 years old), a 
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phenomenon often seen in conventional household travel surveys (Davidson, et 

al., 2007). 

 

Current activity-based models also have room for enhancement, in that there are 

more features to be included in the models to improve model estimates.  One of the major 

concerns is that current activity-based models do not adequately reflect the temporal 

variability of travel behavior.  For example, the models do not include day of week as a 

variable.  Very few of the models even model weekend travel.  Similarly, seasonal 

variability of travel behavior is not reflected either.  Additionally, none of the models 

documented the impact of special events on travel patterns.  In a longer-term sense, 

household demographics change over time, but seldom do current activity-based models 

address longer term life-cycle stage variability - for example, gentrification of large 

neighborhoods, and population aging - in the future scenario population synthesis.  

Previous research has also suggested that the disaggregate modeling approach of activity-

based models can model the impact of population aging on travel behavior change, but 

the implementation of this capability is not performed. 

2.2.1.3. Using GPS-Based Panel Surveys to Improve Activity-Based Models 

Accounting for Day-to-day Travel Variability 

Previous studies have shown the significance of day-to-day variability in 

household travel behavior, and hence, the desirability of longitudinal survey data.  For 

example, Jones and Clarke (1988) drew on studies in the UK and Australia and raised the 

policy and analytical rationale for using multi-day data.  More recently, with the 

availability of GPS technologies, researchers have gained better understanding of day-to-
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day variability through the analysis of multi-day GPS data.  For example, using GPS data 

collected for the Lexington pilot study, Pendyala (1999) reported that the intrapersonal 

variability in number of trips for a 3-day weekday sample was 49%.  Stopher, et al. 

(2007) and Stopher, et al. (2008a) examined intrapersonal variability based on three 

waves of 28, 21, and 15 days of GPS data.  They argued that a survey length of 15 days is 

optimal, based on evidence from the surveys in Australia.   

The use of GPS devices extends greatly the potential duration of monitoring 

periods to multiple weeks, months or even years.  The Commute Atlanta study spans an 

unprecedented length of two and a half years.  The length of this continuous monitoring 

survey has provided an excellent opportunity to examine day-to-day variability in 

household travel behavior and its implications on household travel surveys and travel 

demand modeling.  Li, et al. (2005) examined the morning commute route choice 

behavior of 182 drivers over a ten-day period and found significant correlation between 

the morning commute trip-chaining decision (single vs. multiple routes) and work 

schedule flexibility, commuters’ socio-demographic characteristics and commute route 

attributes.  Schönfelder , et al. (2006) provided evidence from the Commute Atlanta 

study that the monitoring period should last for about five to ten weeks of monitoring to 

gain some certainty about individual choice preference.  Elango, Guensler et al. (2007) 

analyzed the variability using 12 months of data from this study and reported that 

households that have higher income, more members, more vehicles, children and students 

display more day-to-day variability, which arises from seasonal, temporal, and non-

habitual activities.  Long-term multi-day travel surveys are also able to capture the 
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relatively rare events of multi-day journeys (Li, et al., 2007), special events (e.g. ball 

games and construction) and even stay-at-home, zero-trip days.   

One might argue that a cross-sectional survey spanning multiple years can reflect 

day-to-day variability of travel behavior.  However, current cross-sectional surveys 

cannot separate day-to-day variability from demographic differences because these 

surveys employ different households at different points in time.  Xu, et al. (2009a) 

analyzed the travel patterns of 95 households on a case-by-case basis in the Commute 

Atlanta Value Pricing Study, and found considerable variability across households even 

within the same demographic stratum defined by income, household structure and vehicle 

ownership.  The variability with respect to time observed in multi-day data makes it 

possible to partition the total variability into between-household and within-household 

components.   

Demographic Changes and Population Aging 

The potential impact of changing demographics is at the heart of the uncertainty 

associated with assessment of whether a policy intervention in the transportation system 

played a role in changing a household’s travel patterns.  Potential impacts of 

transportation policies are overlaid upon the impacts of background changes (e.g. 

changes in gasoline price, changes in congestion levels, changes in parking pricing 

policies, changes in transit services, etc.).  Furthermore, changes in household 

demographic characteristics are likely to influence travel behavior significantly more than 

the variety of policies being assessed; see, for example (Xu, et al., 2009b).  Furthermore, 

these changes may have very different impacts on different households as a function of 

their original and final demographic characteristics. 
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Explicit micro-simulation of synthetic households and persons, activity-based 

models can allow for testing the impacts of demographic changes (Davidson, et al., 

2007).   However, the reliable realization of this capability depends on the support of 

accurate and detailed underlying survey data.  To model causality and the magnitude of 

behavioral changes, conventional cross-sectional travel surveys fall short on the ability to 

single out variability across demographic groups from the changes within a household.  It 

is also not practical to employ paper diaries to in longitudinal survey efforts, because of 

the increased respondent burden. 

GPS tracking technologies make it possible to monitor household travel behavior 

for extended periods.  The extended monitoring period can be used in measuring the 

effects of such changes.  Xu, et al. (2009b) documented that over a two-and-a-half-year 

observing period, the impact of work status changes was most discernible among the 

demographic changes.  Home location changes and household structure changes are also 

important sources of VMT change.  This finding would have not been possible without 

the continuous monitoring period before and after these demographic changes. 

2.2.2. Transportation Policy Studies 

Many transportation policy studies can benefit from long-term GPS-based panel 

surveys to establish causal relationships.  The discussion below focuses on pricing 

studies, but the implications apply to other policy studies that need to establish cause-

and-effect relationships between household travel behavior and policy measures. 

Kuppam, et al. (2008) identified two issues to improve existing travel models for 

pricing studies:  1) inaccurate values of time due to aggregation biases, and  2) lack of 
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temporal detail and behavioral choice for time-of-day models.  These issues can be 

attributed to three major data deficiencies: 

1. Lack of Disaggregate Detail - Sufficient detailed data are not available across 

individual travelers, vehicle types, trip purposes, travel modes, destination 

choices, trip distance, types of congestion, and road types.  Traditional travel 

diaries provide limited information with respect to such segmentation. 

• Traveler and Vehicle Types - Traditional travel surveys are cross-

sectional.  That is, traditional surveys only provide a snapshot of 

household demographics and their observed travel behavior.  However, 

previous research has provided evidence that household demographic 

characteristics and vehicle ownerships change rapidly over time.  The 

Commute Atlanta study found out that more than 70% of the sampled 

households experienced changes between October 2004 and June 2006 in 

one or more of the major demographic characteristics of home location, 

employment status, income, household structure, schools attended, and 

vehicle ownership (Xu, et al., 2009b).  Without a longer monitoring 

period, the surveys cannot provide accurate information on the extent to 

which travel patterns correlate over time within a given household versus 

the impact of demographic changes. 

• Trip Purpose, Mode, and Destination - Values of time differ across trip 

purposes, modes, and destinations.  Therefore, an accurate representation 

of such trip information is crucial to pricing studies.  However, in 

traditional paper-based travel diaries, participants tend to under-report 
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trips, especially short, discretionary and non-home-based trips (Pierce, et 

al., 2003; Ogle, et al., 2005).  This issue not only undermines the accuracy 

of model estimates, but also results in unreliable values of time, and hence 

inconsistent evaluation of pricing policies. 

• Trip Distance, Congestion Level, and Road Type - Traditional paper-

based diaries collect very limited information on route choice.  Therefore, 

even though the surveys report origins and destinations, it is very difficult 

to calculate the actual trip distance.  For the same reason, the road types 

the participants travel on are unknown because of the lacking route choice 

information.  Furthermore, it is practically impossible for traditional 

paper-based travel diaries to reflect travel speed.  Thus modelers do not 

know the severity of congestion the traveler was experiencing, or whether 

the congestion was recurrent or non-recurrent.  Therefore, paper-based 

travel diary surveys do not collect the types and severity of congestion, 

whereas GPS-based surveys do collect these data 

2. Lack of Temporal Activity Detail - Details of activity and trip scheduling and 

peak spreading behaviors are not available in cross-sectional, short-duration, 

traditional travel diary methods.  The study of time-of-day policy measures 

require that survey data provide: 

• Complete Picture of Household Activity and Trip Scheduling Behavior - 

Due to trip under-reporting, the daily patterns that conventional household 

surveys portrait contain gaps where parts of a tour are frequently missing.  
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• High-Resolution of Departure/Arrival Times and Activity Duration - 

Participants often round up departure/arrival times to five-minute or even 

15-minute increments.   Activity duration is often a derived value from the 

arrival and departure times reported in the surveys, and is therefore often 

erroneous (Davidson, et al., 2007).  On the other hand, trip data collected 

by GPS devices provide accurate time stamps. 

3. Lack of Before-and-after Studies to Validate the Effects of Policy Changes - This 

is arguably the most important drawback of conventional paper-based travel 

surveys.  For the models to accurately evaluate pricing policies, there are two 

fundamental questions that survey data need to be able to answer: the causal link 

between travel behavior changes and pricing policies, and, if the causal link can 

be established, the magnitude of changes.  It is well-understood in social sciences 

and biomedical research that longitudinal studies of the same sample is the only 

way to explicitly model causality (Diggle, et al., 2002; Fitzmaurice, et al., 2004), 

but as summarized in Table 2.3, the surveys supporting activity-based models are 

all cross-sectional in nature.  Therefore, the causality and magnitude of the causal 

effects estimated from these survey data are at best presumptuous. 

 

The lack of longitudinal design of the surveys can also explain why some 

intuitively important variables, such as trip distance, time of day, gender, age, etc., only 

have marginal significance on model output of values of time in pricing studies, as 

reported in some pricing studies using time-of-day choice models, e.g. (Kuppam, et al., 

2005).  Longitudinal surveys are the only method to dynamically track such changes 
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(Kitamura, 1990).  Because the temporal consequences of events are known, longitudinal 

data make it possible to separate the impacts of a background change, such as a change in 

the household demographic characteristics and an increase in gas prices, from the impacts 

of an intervention in the transportation system.  Longitudinal surveys therefore allow for 

causal analyses at the household level. 

2.3. Need for Research on Sample Size Requirement 

Studies of the sample size requirements of longitudinal surveys are few.  Among 

them are Stopher and Greaves (2007), which illustrated the issue using a panel to 

measure the change in vehicle kilometers traveled (VKT) before and after a simulated 

policy, and Stopher and Kockelman (2008b), which examined the sample size benefits of 

using a multi-day survey to measure VKT, number of trips and total travel time.  These 

studies have several limitations.  First, the survey lengths these studies are based on are 

relatively short (less than a month for each continuous monitoring period).  The relatively 

short survey lengths do not allow these studies to reveal demographic instability and the 

corresponding travel behavior changes.  Second, these studies often relied on the 

normality assumption of the data, which is not always the case in practice.  Third, none of 

these studies controlled for confounding factors such as demographic characteristics, 

seasonal effects, and gasoline prices in their sample size calculation procedures.  Finally, 

these studies did not take into account issues such as dropouts and missing data, both of 

which are common phenomena in GPS-based panel survey data collection. 

Based on the few studies on sample size requirements for longitudinal travel 

surveys, the issues to be explored are many.  First, the parameters to be measured are 

very limited in current studies, including only total travel distance, number of trips and 
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total travel distance.  As mentioned before, the objectives of longitudinal travel survey 

mainly lie in three aspects:  modeling travel behavior, evaluating behavior change before 

and after transportation policies and investments, and understanding process decisions.  

Different transportation policies will require that the analysis of travel surveys focused on 

different parameters at various analytical levels.  The rationale is that transportation 

policies affect people’s decision-making process pertaining to travel, which in turn 

affects the results such as intra-regional number of trips and VMT, and long-distance 

travel frequency and VMT, etc.  Therefore, travel response studies need to capture the 

variables involved in that process.  On the one hand, more categories of parameters 

should be explored.  For example, the study of long distance travel patterns will aid 

decision making concerning fuel consumption, whereas the study of intra-regional travel 

is critical to congestion management.  Also, the GPS tracking technology has provided 

the possibility to analyze route choices that have never been available before (Stopher, 

2008b).  These travel attributes need to be analyzed separately because they result from 

very different decision-making processes.  That is, the factors influencing the decision to 

take long-distance trips are not the same as those influencing the decision not to travel on 

a certain day.  On the other hand, the general parameters should be analyzed at more 

detailed levels, such as by time of day, day of week, and month of year.  By doing so, 

researchers gain insights into the temporal characteristics of travel behavior such as the 

rhythm of travel patterns.  Such information will not only allow the evaluation of the 

impact of flexible work hours across travel days (Stopher, et al., 2008b), for example, but 

also benefit the development of activity-based models. 
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Second, the impact of survey design considerations on sample size requirements 

are not well documented in the literature.  The first design consideration that will affect 

sample size requirements is whether simple random sampling, stratified random 

sampling, or blocking designs are to be employed.  Stratified random sampling is “the 

process of selecting a sample in such a way that identified subgroups in the population 

are represented in the sample in the same proportion as they exist in the population” 

(Fraenkel and Wallen, 2008).  The basic concept of blocking design is to create 

homogeneous blocks in which the “nuisance factors”, such as household income, 

household size, etc, are held constant, and the variable of interest, such as a mileage-

based pricing incentive, is allowed to vary.  Nuisance factors are those that may affect the 

measured result (e.g. number of trips per day), but not of primary interest 

(NIST/SEMATECH, 2003).  In the case of household travel surveys, the nuisance factors 

are usually household demographic characteristics. 

The sample size estimating methods in existing studies mentioned above assume 

simple random sampling.  In practice, however, stratified random sampling is often 

employed, using sample size estimating methods adapted from simple random sampling.  

Such methods may not be applicable to the experimental designs for longitudinal surveys.  

First, the strict random sampling within subgroups of the population might increase the 

non-response rate because it is necessary for longitudinal surveys to have reliable 

participants (Zumkeller, et al., 2006).  Second, blocking designs are more appropriate 

than stratified random sampling for longitudinal surveys to minimize the effect of 

background conditions.  Expectedly, blocking designs provide greater precision of 

estimates of the difference in travel response than that prepared with a completely 
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randomized design if real block effects are present (Mace, 1964).  These special design 

considerations for longitudinal surveys are likely to render the sample size estimating 

methods ineffective in the context of travel response studies, and hence the necessity of 

new methods tailored for longitudinal surveys. 

The second and most obvious design consideration that influences sample size 

requirements is the duration of the continuous monitoring period.  The long monitoring 

period may introduce significant temporal variability as described in Section 2.2.1.3.  

Such variability needs to be accounted for in the sample size planning procedures.  Given 

the necessity and technical capability to continuously monitor travel behavior, there is a 

need to examine the impact of longer monitoring periods on sample size requirements.  

Even though the trade-offs between the duration of monitoring periods and the sample 

size is intuitive, it is important to quantify these trade-offs to ensure the cost-effectiveness 

of travel surveys. 

Finally, the inherent characteristics including variability and correlation of the 

attributes of interest are not well understood for longitudinal travel data.  The longitudinal 

design gives rise to potential association for repeated observations within a household, 

which must be taken into consideration both in the design and the analysis stages (Liu 

and Liang, 1997).  Sample size calculation methods for studies with repeated or 

correlated data have been proposed since the 1990s, and there is generally no explicit 

formula that can be used to handle correlated data.  Such methods have mainly been 

applied in biomedical studies, but not yet in travel survey designs.  Specifically, the 

following topics need to be discussed in detail for sample size planning in the 

transportation field: 
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• The sources and magnitude of variability; particularly, 

o The influence of changes in background environment on the variability of 

travel variables 

o The influence of changes within households on the variability of travel 

variables 

• The distributional properties of each travel variable 

• The correlation within a household 

• The influence of missing data on sample size requirement 

 

The variability in travel behavior variables arises from both between-household 

and within-household sources, as will be discussed in Chapter 4.  The understanding of 

the magnitude of variability is the first prerequisite for sample size estimation.  The 

greater the variability, the larger the sample size is required.  The knowledge of 

distributional properties, which will be explored in Chapter 8, is required for the adoption 

of the correct sample size calculation formula or the correct model form for numerical 

methods.  The within-household correlation is characteristic of longitudinal data.  The 

degree of positive correlations affects the required sample size in different directions 

depending on the main objective of a study.  Positive correlation increases the required 

sample size when estimating cross-sectional averages or differences between averages for 

more than one group, but decreases the required sample size when estimating a change 

over time (Diggle, et al., 2002).  The correlation structures of key travel behavior 

variables will be explored in Chapter 8.  The design of a longitudinal study also differs 

from that of a cross-sectional study in that the required sample size should take attrition 
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into account.  In a GPS-based panel travel survey, missing data occur due to various 

reasons such as dropouts and equipment issue.  At the design stage, proper consideration 

of missing data can help ensure the availability of valid data for analysis, as will be 

discussed in Chapter 10 for before-and-after studies. 

2.4. Summary 

GPS-based panel travel surveys can extend the monitoring period while 

decreasing respondent burden.  The GPS technology can continuously monitor household 

travel behavior for multiple days, weeks, months, and even years.  This capability can 

improve the accuracy of activity-based models, as well as policy evaluation, such as 

congestion pricing, because a long monitoring period allows for causal analysis and the 

realistic measurement of policy effects.  This capability also enables the models to 

include long-term temporal elements that reflect day-to-day variability of travel behavior 

and demographic changes. 

The desirability of GPS-based panel data warrants research to examine the sample 

size requirements for collecting such data.  The few existing studies have a series of 

limitations with regard to the assumptions and working data they relied on.  More 

comprehensive procedures to estimate sample size requirements for longitudinal studies 

have been applied in biomedical studies.  Such procedures often require numerical 

methods, and need to be adapted to suit transportation studies. 

This dissertation will adapt the existing procedures in biomedical research to the 

design of GPS-based panel travel surveys.  The variability, distributions, and correlation 

structures of GPS-based panel travel data will be studied to estimate required sample 

sizes for studies of various objectives - to obtain reliable statistical references, to conduct 
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regression analysis, and to evaluate transportation policies through before-and-after 

studies.  The data upon which the analyses are based come from the Commute Atlanta 

study.  The detailed data description will follow in Chapter 3. 
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CHAPTER 3  

DATA DESCRIPTION 

 

This chapter describes the data on which the analyses in this dissertation are 

based.  The first part provides an overview of the data collection effort of the Commute 

Atlanta study, based on the information provided by Li (2004) and Ogle (2005).  The 

second part describes the data processing procedures that extracted certain aspects of 

travel information for later analyses from the Commute Atlanta data. 

3.1. Data Collection 

The Commute Atlanta study was designed to assess the effects of converting fixed 

automotive operating costs into mileage-based and congestion-based operating costs.  

The monitoring program originally started in 2003, but the pricing study did not formally 

start until October 2004 due to a delay in funding schedule (Ogle, 2005).  For 

approximately three years between the commencement of monitoring in 2003 and the end 

of the pricing study in 2006, the Commute Atlanta study has collected detailed 

information for more than 1.8 million vehicle trips.  The pricing experiment of the 

Commute Atlanta study was implemented in two phases. In Phase I of the study from 

October 2004 to June 2005, the research team collected baseline travel data and travel 

diaries from participating households for almost two years.  Employer commute options 

surveys and parallel travel diary data were also collected.  In Phase II of the study from 

October 2005 to June 2006, the team implemented mileage-based incentives at 5 

cents/mile from October to December, 10 cents/mile from January to March, and 15 
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cents/mile from April to June, in an effort to assess whether participating households 

would change their travel behavior in response to the pricing incentive.  The final quarter 

of pricing at 15 cents per mile is roughly the equivalent of a household paying their 

insurance, vehicle registration fees, and gasoline taxes on a cent per mile basis.  If 

households respond to cent/mile incentives by reducing vehicle miles of travel, strategies 

such as pay-as-you drive insurance or replacement of gasoline taxes with cent/mile fees 

could reduce congestion, fuel consumption, and vehicle emissions. 

Data are classified into three primary groups including trip data, demographic 

data, and support data. 

3.1.1. Trip Data 

The proposed research effort will use the trip data collected in the Commute 

Atlanta Value Pricing Study from 2004 to 2006.  The Commute Atlanta study recruited 

273 households in the 13-county Atlanta metropolitan area.  The project installed GT 

Trip Data Collectors in more than 475 vehicles in the participating households.  These 

devices collected second-by-second vehicle activity data that include position, speed and 

heading.  A trip is defined as the vehicle activities between an engine-on event and an 

engine-off event. 

 
 



43 

 

Figure 3.1 Commute Atlanta Study Area and Household Locations  
(Li, 2004) 

 
 

3.1.2. Demographic Data 

The Commute Atlanta study also sent out monthly household surveys to update 

household demographic information so that every trip in the Commute Atlanta database 

is associated with specific vehicle information, specific household information, and 

specific primary driver information based on the survey information received.  The 

survey data are supplemented by geo-spatial analysis of vehicle activity data (observation 

of trip frequencies by time of day) to verify the home, work, and school locations.  This 

methodology is described in detail in Section 3.2.1. 

3.1.3. Support Data 

Other data that support the data analysis include economic and spatial 

information.  For example, the gas price information is crucial in the analysis of VMT 

change over time.  Spatial information includes various maps such as business locations, 

street network, transit routes and stops, etc.  The Commute Atlanta research team 
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obtained access to land use database and business address database.  A variety of 

mapping routines were employed to incorporate and visually display these data. 

3.2. Data Processing 

Not all data collected in the period from 2004 to 2006 in the 273 households are 

usable due to various reasons such as equipment failures and panel attrition.  Equipment 

failures include instrument component failures, disconnecting of power during vehicle 

maintenance, etc.  Instrument component failures, including random memory card 

failures, GPS, antenna, and other board-level failures, occur approximately 3-5% per 

year.  Panel attrition is another major reason why there are periods for which travel 

information could not be obtained for every vehicle in the fleet.  Part of the attrition is 

due to a delay in funding in 2003.  More than 30% of the households opted out of the 

study during the study period between the initial deployment and the experimental 

implementation.  The other part of the sample group attrition comes from the instability 

of household demographics.  Changes in participant vehicle ownership, household 

structure, and residence locations occur at a rate of approximately 8% per year.  When 

households did not report the household changes promptly, the research team would lose 

contact with those households. 

Extensive data processing effort is thus required considering all the 

aforementioned factors.  If households are the sampling units, households lacking proper 

demographic information need to be removed from the study.  If the equipment in one or 

more vehicles of one household did not function properly for a period, that household 

will also have to be removed for at least the period where data are omitted (because 

complete household data are not available for that period).  For vehicle- based analysis, 
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for example, in commute behavior studies, only the vehicle in which the equipment failed 

will need to be removed for that period.  For individual-based analysis, the same criterion 

as for vehicle-based analysis will apply, but valid individual demographic information 

must also be available. 

3.2.1. Demographic Information 

The data sources for household demographic characteristics and changes come 

mainly from monthly household surveys.  The survey data are supplemented by geo-

spatial analysis of vehicle activity data (observation of trip frequencies by time of day) to 

verify the home, work, and school locations. 

The analytical procedure for each case study begins with a review of the 

household information relational database to identify basic information such as household 

structure, work and school status, income and vehicle ownership.  In terms of household 

structure, the analyst reviews number of household members, age group of each member, 

and the relationships between members.  The database also provides information on the 

work and school status of each participant, including the specific job type, work location, 

education level, and school location, over time. 

The number of household members, income and the number of vehicles owned 

determine to which GT sampling strata a household belongs.  However, one or more 

aspects of the household demographic characteristics often change during the study 

period.  Some households report these changes in the surveys, but not necessarily in a 

timely fashion.  Other households do not report the changes at all.  Analysts are generally 

able to identify work and school location changes through trip end frequencies, as 

described below. 
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Trip ends provide the most insight into household travel activities.  The time-of-

day analysis of trip end frequencies provides evidence about where household members 

go and usually infers what they do.  Home and work locations are among the most 

frequently visited places.  Also, the trip end with the highest frequency during the 

morning peak usually signals the work location.  Using this information, the analysts rank 

the trip end frequencies and match the first ten to home and work locations obtained from 

household surveys.  This automated process only matches a limited number of locations.  

The reasons can be that the household did not report these locations, or the locations 

changed but they did not report the changes, and/or that the geo-coding process did not 

identify the right locations.  Therefore, a manual process matches the remaining 

household locations.  Household results are integrated into a spatial graphics package to 

produce a map showing its home, work and school locations, as illustrated in Figure 3.2. 
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Figure 3.2 Sample Household Home, Work and School Location Map 

(Xu, et al., 2009a) 
 
 

3.2.2. Intra-Regional Trips 

Each trip recorded by the GPS devices in the Commute Atlanta study has an 

associated travel region status, indicating whether a trip:  1) stays inside of the study 

region from start to end, 2) starts in the region and ends outside of the region, 3) stays 

outside of the study region from start to end, and 4) starts outside of the region and ends 

inside the region.  The Commute Atlanta intra-regional dataset used in this dissertation 

includes only the trips that stay inside of the study region from start to end. 
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The intra-regional dataset in this dissertation is extracted from the pricing study 

element of the Commute Atlanta study, spanning from October 2004 to June 2005 as the 

baseline period, and from October 2005 to June 2006 as the pricing period, forming the 

basis for sample size analysis in Chapter 9, since intra-regional travel is normally the 

main concern of metropolitan planning organizations (MPOs) for travel demand 

modeling and policy studies, the intra-regional data.  For consistency, all analyses 

concerning intra-regional travel in this dissertation use this same dataset. 

3.2.3. Long-Distance Tours 

The algorithms for identifying long-distance tours in this dissertation are adapted 

from Li et al. (2007).  A long-distance tour is defined as a series of trips that start inside 

of the study area, go to a destination outside of the study area and then come back inside 

the region again, with a linear distance between home and destination of more than 50 

miles.  The 50-mile criterion is chosen based on both the definition of long-distance 

travel in the 2001 National Household Travel Survey (NHTS) as reported by Hu and 

Reuscher, (2004) and recommendations by Li, et al. (2007).  Travel distance and duration 

are aggregated from the trips in that tour. 

The Commute Atlanta long-distance dataset in this dissertation includes long-

distance travel information for the same 95 households as the intra-regional dataset, 

except that one of the 95 households was excluded.  The excluded household has one 

member who is a college student living outside of the study area but stays with the 

parents inside the study area extensively.  Given the algorithms for identifying long-

distance tours, all the intra-regional trips this person makes while staying with the parents 

would be coded as parts of long-distance tours, rendering the numbers and VMT of long-
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distance tours observed in this household extremely high.  The long-distance dataset 

provides data spanning from January 2004 to June 2006. 

3.3. Data Summary 

This dissertation utilizes the GPS-based panel data collected in the Commute 

Atlanta study.  The panel data include trip data collected by the in-vehicle GPS devices, 

demographic information of the households in the study, and support data such as 

background economic information and spatial information made available by various 

mapping routines. 

Two separate datasets were processed for the subsequent analyses - the intra-

regional travel dataset and the long-distance travel dataset.  The intra-regional travel 

datasets include travel information of the 95 households for which updated demographic 

information were available.  The intra-regional travel dataset covers household travel 

from October 2004 to June 2005, and from October 2005 to June 2006, as defined by the 

pricing element of the Commute Atlanta study.  October 2004 to June 2005 is the 

baseline period of the pricing study, whereas October 2005 to June 2006 is the pricing 

period.  Both periods amount to 546 travel days in total.  The intra-regional dataset 

contains 250,580 trips, totaling up to 1.62 million VMT. 

The long-distance travel dataset provides long-distance travel information of 94 

households.  All the households in the intra-regional dataset are included in the long-

distance dataset, except for one household in which one member is a college student 

living outside of the study area but stays with the parents inside the study area 

extensively.  The long-distance travel data span from January 2004 to June 2006.  The 

longer than intra-regional data period allows for more observations of long-distance tours, 
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which can be viewed as rare events compared to intra-regional trips.  The long-distance 

travel dataset contains 1,006 long-distance tours, totaling up to 0.48 million VMT. 
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CHAPTER 4  

EXPLORATORY DATA ANALYSIS 

 

This chapter conducts exploratory analysis for both intra-regional and long-

distance travel behavior, as well as some key indicators of overall travel variability, such 

as zero-trip days and extremely active travel days, using the Commute Atlanta intra-

regional and long-distance datasets as described in Chapter 3.  The purposes of 

exploratory data analysis are twofold:  1) to differentiate between the between-household 

and within-household information made available by the panel data collected in the 

Commute Atlanta study, and  2) to visualize patterns in data and identify potential causal 

relationships.  By differentiating the between-household variability from the within-

household variability, this chapter will deepen the understanding of the nature of panel 

data, and therefore provide insight into the design of panel surveys.  By visualizing 

patterns in data and indentifying potential causal relationships, this chapter will form a 

basis for regression analysis in Chapter 9. 

The first four sections of this chapter examine overall travel characteristics, 

including day-of-week variability, seasonality, and the distributions of zero-trip days and 

extremely active travel days.  Section 4.5 explores the relationships between key travel 

behavior variables and demographic characteristics.  Intra-regional travel and long-

distance travel are examined separately in most cases because each has unique 

characteristics and can be influenced by different factors.   
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4.1. Day-of-Week Variability 

4.1.1. Intra-Regional Travel 

The Commute Atlanta intra-regional dataset includes 18 months of data for 95 

households.  As described in Section 3.2.2, intra-regional travel refers to trips that stay 

within the 13-county Commute Atlanta study area from beginning to end.   

Figure 4.1 illustrates the day-of-week variability in the number of intra-regional 

trips per day.  Figure 4.1 is created by first taking the average number of intra-regional 

trips per each day of week per household, and then generating bootstrap confidence 

intervals for the household means.  Therefore the widths of the error bars in Figure 4.1 

represent between-household variability.  The numbers of intra-regional trips are not 

significantly different among weekdays.  However, Friday displays a slightly larger value 

of number of intra-regional trips than other weekdays.  Not surprisingly, the lowest 

number of intra-regional trips occurs on Sunday.   
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Figure 4.1 Between-Household Day-of-Week Variability in Daily Number of Intra-

Regional Trips   
Error bars represent 95% bootstrap CI of household means of daily number of intra-

regional trips. 
m=95 households 

 
 
 

The confidence intervals in Figure 4.1 are wide, indicating large amount of 

between-household variability, which can be observed in Figure 4.2.  In Figure 4.2, each 

series of error bars represents an individual household.  Three (3) example households are 

shown to prevent the graph from looking too crowded with all households.  The three 

example households are the 5th, 50th, and 95th percentiles with regard to average number 

of intra-regional trips per day for all days.  The width of a bootstrap confidence interval 

represented by an error bar indicates the variability in the number of intra-regional trips 

on a day of week within a household.  The fluctuations of a series of error bars indicate 

the rhythm of intra-regional travel frequency by day of week within a household.  The 
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differences between each series of error bars show the magnitude of between-household 

variability in number of intra-regional trips per day by day of week.  Figure 4.2 also 

indicates that different households display different day-of-week profiles with regard to 

number of intra-regional trips.  The trend of higher trip frequency during the week and 

lower trip frequency during weekends is not necessarily true for each individual 

household.  

 
 

 
Figure 4.2 Within-Household Day-of-Week Variability with Regard to Daily Number of 

Intra-Regional Trips 
Three series of error bars represent the 5th, 50th, and 95th percentile households with 

regard to average number of intra-regional trips per day for all days. 
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The VMT associated with intra-regional travel, as shown in Figure 4.3, display 

similar trends as seen in Figure 4.1.  A graph highlighting within-household variability, 

similar to Figure 4.2 for number of intra-regional trips, is produced for intra-regional 

VMT and is provided in Figure 4.4.   
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Figure 4.3 Between-Household Day-of-Week Variability in Daily Intra-Regional VMT 
Error bars represent 95% bootstrap CI of household means of daily intra-regional VMT. 

m=95 households 
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Figure 4.4 Within-Household Day-of-Week Variability with Regard to Daily Intra-

Regional VMT 
Each series of error bars represents an individual household. 

Three series of error bars represent the 5th, 50th, and 95th percentile households with 
regard to average intra-regional VMT per day for all days. 

 
 
 

A difference between the day-of-week variability in the number of intra-regional 

trips and that in intra-regional VMT is that, unlike the number of intra-regional trips, 

VMT do not peak on Fridays, indicating that households tend to make more trips but 

shorter trips on Friday.  Another difference is that the number of intra-regional trips on 

Saturday does not seem significantly lower than that on a weekday, but the intra-regional 

VMT on Saturday does, indicating that households tend to make shorter trips on a 

Saturday than on a weekday, which is not surprising for trips that stay within the region. 
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4.1.2. Long-Distance Tours 

As described in Section 3.2.3, long-distance tours are defined as a series of 

consecutive trips that start and end at home, with the farthest destination of all trips being 

outside of the 13-county study area and more than 50 miles away from home measured in 

straight-line distance.  Because long-distance tours tend to be multi-day events, the 

numbers and VMT of long-distance tours shown in both figures refer to the tours starting 

on a particular day of week. 

As expected, the day-of-week variability of long-distance travel is significantly 

different from intra-regional travel.  Figure 4.5 shows the average number of long-

distance tour per day starting on each day of week.  The values are very small, indicating 

that long-distance tours are rare events.  The mean number of long-distance tour starts 

peaks on Friday and Saturday, as does the variance.  The mean number of long-distance 

tours on Sunday is lower than those on Friday and Saturday which are significantly 

different than those on Monday through Thursday, but higher than those during the rest 

of the week.  This phenomenon is attributable to the impact of holidays that occur on a 

Monday.  Households are also more likely to make one-day tours on Sunday than multi-

day tours.  Among all the 149 long-distance tours starting on Sundays, 71 are one-day 

tours.  This is the second highest number of one-day tours starting on a certain day of 

week, next to 99 one-day tours starting on Saturday among all the 244 long-distance tours 

starting on Saturday. 
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Figure 4.5 Day-of-Week Variability in Number of Long-Distance Tour Starts 

Error bars represent 95% bootstrap CI of household means of number of long-distance 
tours per month. 
m=94 households 

 
 

4.2. Seasonality 

4.2.1. Intra-Regional Travel 

Figure 4.6 and Figure 4.7 present the seasonal variations of daily number of trips 

and VMT of intra-regional travel as seen in the Commute Atlanta intra-regional travel 

dataset.  The trend of number of trips and that of VMT are similar, indicating that the 

average distance of a trip is relatively stable throughout the year.  Not surprisingly, the 

daily intra-regional travel does not display a very significant seasonal pattern.  The values 

of both the number of trips and VMT seem low for April and June, in contrast to the 

higher values in March and May.  The low values seen in April could be attributable to 



59 

the spring break that occurs in early April for schools in the Atlanta area.  The low values 

seen in June could be attributable to the fact that the last day of school occurs in early 

June in the Atlanta area.  Households tend take out-of-town trips when the schools are 

off, as evidenced in the increase in long-distance travel in April and June that will be 

examined in the next section, and hence show less intra-regional travel.   

 
 

0

1

2

3

4

5

6

7

8

Jan Feb Mar April May Jun Oct Nov Dec

Month

D
ai

ly
 N

um
be

r o
f I

nt
ra

-R
eg

io
na

l T
rip

s

 
Figure 4.6 Seasonal Effects on Daily Intra-Regional Number of Trips 

Error bars represent 95% bootstrap CI of household means of number of intra-regional 
trips per day. 

m=95 households 
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Figure 4.7 Seasonal Effects on Daily Intra-Regional VMT 

Error bars represent 95% bootstrap CI of household means of daily intra-regional VMT. 
 
 
 

The seasonal effects are also compared year to year, as shown in Figure 4.8 and 

Figure 4.9.  The average household daily intra-regional travel during the baseline months 

of the Commute Atlanta study (October 2004 to June 2005) is compared side by side to 

that during the pricing months (October 2005 to June 2006).  The information revealed in 

Figure 4.8 and Figure 4.9 will have important implications on sample size analysis for 

before-and-after studies that will be presented in Chapter 10, because the higher the year-

to-year variability in travel is, the more challenging it is to detect a policy impact with a 

given sample size.  Figure 4.8 and Figure 4.9 show that the seasonal trends in both study 

periods are similar.  However, the confidence intervals of the months March, April and 

May of the pricing period are wider than those of baseline period, indicating the presence 
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of extreme values in those months of the pricing period.  The extreme values will have a 

significant impact on sample size requirements, as will be discussed in Chapter 10. 

 
 

 
Figure 4.8 Comparison of Daily Number of Intra-Regional Trips between Baseline and 

Pricing Periods 
Error bars represent 95% bootstrap CI of household means of daily number of intra-

regional trips. 
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Figure 4.9 Comparison of Daily Intra-Regional VMT between Baseline and Pricing 

Periods 
Error bars represent 95% bootstrap CI of household means of daily intra-regional VMT. 

 

 

4.2.2. Long-Distance Travel 

Figure 4.10 shows little seasonal variation of monthly number of long-distance 

tours.  The average number of long-distance tours per household in January appears 

significantly different than those in April and June, but all other months show very 

similar numbers of long-distance tours.  The wide confidence intervals are associated 

with the large between-household variability in monthly number of long-distance tours. 
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Figure 4.10 Seasonal Effects on Monthly Number of Long-Distance Tours 

Error bars represent 95% bootstrap CI of household means of number of long-distance 
tours per month. 
m=94 households 

 
  
 
 
 

Figure 4.11 shows the seasonal variation of monthly VMT of long-distance tours.  

The month-to-month differences in mean long-distance VMT are larger and more 

significant than those in number of long-distance tours.  Similar to Figure 4.10, January 

observes the lowest value of long-distance VMT.  However, the peak in July is more 

significant in Figure 4.11 than in Figure 4.10, indicating that households tend to travel 

not only more frequently in July, but also farther away.  The high value of VMT in June 

is likely attributable to the fact that households tend to take long family vacations after 

the schools let out.   
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Figure 4.11 Confidence Intervals of Monthly VMT of Long-Distance Tours 

m=94 households 
 
 

4.3. Zero-Trip Days 

Based on a meta-analysis of surveys in the U.S. and Europe, Madre, et al. (2007) 

reported that most people will usually stay at home all day at least one day per week, and 

that a standard one-day, weekday-only travel diary should expect 8% - 12% immobile 

person-days.  Analyzing the occurrence of zero-trip days has important implications on 

the evaluation of survey quality, because households that do not respond to paper-based 

travel diaries have higher incidences of zero-trip days (Ogle, et al., 2005).  The Commute 

Atlanta data are based on active tracking, so survey non-response is not an issue, 

allowing an accurate estimate of the ratio of zero-trip days in household travel behavior. 

The Commute Atlanta pricing study that collected18-month of data for 95 

households includes 546 days of observations for each household.  This should amount to 
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95*546=54,720 “household-days” of data.  With missing data taken into account, the 

study actually provided 44,173 household-days of data.  Among the 44,173 household-

days in the sample, 4,959 household-days observed zero trips1.  This amounts to 11.2% of 

all the household-days, or slightly less than one day a week.  Specifically, 9.3% of all 

weekdays observed zero trips.  This result agrees quite well with conclusions in Madre et 

al. (2007).   

Figure 4.12 illustrates the distribution of zero-trip days by day of week.  

Interestingly, households have a higher propensity not to travel in weekends.  On 

weekdays, Wednesdays observe the least zero-trip days. 

 
 

                                                 
1 The analysis of this section considers all travel, including both intra-regional and long-distance, between 
October 2004 and June 2005 and October 2005 and June 2006. 
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Figure 4.12 Number of Zero-Trip Days by Day of Week 

 
 

4.4. Extremely Active Travel Days 

Approximately 5% of all household-days, as well as all household-weekdays, 

observed 15 or more trips1 per day.  The 97.5 percentile of number of trips observed in 

one day is 18.  Therefore, an “extremely-active-travel” day is defined as a day when a 

household made 15 or more trips.  Ogle, et al. (2005) reported that non-responding 

households in a paper diary survey have higher incidences of 16+ trip days, and that 

overall, non-responding households make a higher average number of trips per day per 

                                                 
1 The analysis of this section considers all travel, including both intra-regional and long-distance, between 
October 2004 and June 2005 and October 2005 and June 2006. 
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household.  Understanding the non-response bias towards active travel has important 

implications on evolving travel survey design. 

Figure 4.13 shows the distribution of extremely active travel days by day of week.  

The counts are of 95 households for 18 months.  Friday observes more active travel than 

any other days of the week.  Households are also less likely to have an extremely active 

travel day on weekends than during the week.  From Monday to Thursday, the tendency 

to have extremely active travel varies only very slightly. 

 
 

 
Figure 4.13 Number of Extremely Active Travel Days by Day of Week 
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4.5. Association between Travel Behavior and Demographic Characteristics 

In the Commute Atlanta study, households are recruited based on income, 

household size and vehicle ownership (Elango, et al., 2007).  These variables are also 

frequently used as control variables in activity-based models (Bradley and Bowman, 

2006).  In this section, key travel behavior variables will be examined against income, 

household size and vehicle ownership separately.  To provide a basis for subsequent 

regression analysis, the variable of daily intra-regional VMT is chosen as the proxy for 

intra-regional travel, and the monthly number of long-distance tours is chosen as the 

proxy for long-distance travel.  These two variables and their association with 

demographic characteristics are discussed in detail in this section.  Relevant graphs for 

the number of intra-regional trips and long-distance VMT are included in Appendix A, 

but are not discussed in the text. 

4.5.1. Demographic Characteristics and Intra-Regional Travel 

This section examines the effects of various demographic characteristics on daily 

intra-regional VMT.  The three major demographic variables assessed in the context are 

household income, household size, and total number vehicles owned by the household.   

4.5.1.1. Household Income 

Figure 4.14 shows the association between daily intra-regional VMT and 

household annual income.  The number of observations in each of the four income groups 

is summarized in Table 4.1, as are the definitions of the income groups.  Figure 4.14 

indicates a positive correlation between household income and daily intra-regional VMT.  

Households with annual incomes below $30,000 undertake significantly fewer VMT than 

other households.  Households with annual incomes between $75,000 and $100,000 and 
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households with annual incomes more than $100,000 appear to conduct similar amounts 

of VMT. 
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Figure 4.14 Daily Intra-Regional VMT by Income Group 

m=95 households 
 
 
 

Table 4.1 Number of Observations by Income Group 
Income Group 

Code Definition 
Number of Household-Days Percent 

1 <$30k 4095 9.3 

2 $30k - $75k 24925 56.4 

3 $75k - 
$100k 5654 12.8 

4 ≥$100k 9499 21.5 

Total 44173 100.0 
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Figure 4.14 also indicates that, not only do average daily intra-regional VMT 

increase with household income, but the between-household variability in intra-regional 

VMT also increase with household income, likely due to the lack of control of other 

variables, e.g. employment status, household structure, etc.   

4.5.1.2. Household Size 

The association between daily intra-regional VMT and household size is 

presented in Figure 4.15.  Table 4.2 summarizes the number of observations by 

household size.  The daily intra-regional VMT generally increase with household size in 

the Commute Atlanta sample.  The differences in daily intra-regional VMT among 

households with one (1), two (2), and three (3) members are statistically significant, but 

the differences among households with three (3) and four (4) members are not.  The 

widths of confidence intervals also show a trend of increasing as the household size 

increases, indicating that households with more members tend to display more variability 

with regard to daily intra-regional VMT.   
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Figure 4.15 Daily Intra-Regional VMT by Household Size 

m=95 households 
 
 
 

Table 4.2 Number of Observations by Household Size 
Household Size  Number of Household-Days Percent 
1 12726 28.8 
2 16088 36.4 
3 6010 13.6 
4+ 9349 21.2 
Total 44173 100.0 

 
 

4.5.1.3. Vehicle Ownership 

The association between daily intra-regional VMT and household vehicle 

ownership is presented in Figure 4.16.  Not surprisingly, the graph shows a trend of 

positive correlation.  In the Commute Atlanta sample, households that own only one (1) 

vehicle display significantly lower daily intra-regional VMT, whereas households that 
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own four (4) or more vehicles display significantly higher intra-regional VMT.  

Households that own two (2) vehicles show similar amount of VMT to households that 

own three (3) vehicles.   
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Figure 4.16 Daily Intra-Regional VMT by Total Number of Vehicles Owned 

m=95 households 
 
 
 

Table 4.3 Number of Observations by Total Number of Vehicles 

Total Number of Vehicles Number of Household-Days Percent 

1 17385 39.4 
2 16871 38.2 
3 7048 16.0 
4+ 2869 6.4 
Total 44173 100.0 
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4.5.1.4. Inter-Correlation among Demographic Variables 

The positive correlations seen in Figure 4.14, Figure 4.15 and Figure 4.16 should 

be interpreted with the caveat that there is significant collinearity among the demographic 

variables.  Table 4.4 provides the non-parametric correlation coefficient, Spearman’s ρ, 

between each pair variables among the three demographic variables.  All correlations are 

significant, with the highest correlation coefficient value of 0.615 occurring between 

household size and total number of vehicles.  The significant amount of collinearity 

implies that remedial measures should be taken into account in the subsequent regression 

analysis. 

 
 

Table 4.4 Correlation among Demographic Variables 
  Spearman’s ρ  Household Size Income Group 

Correlation Coefficient 0.412 Income Group 
Significance .000 

 

Correlation Coefficient 0.694 0.484 Total Number of Vehicles 
Significance .000 .000 

 
 

4.5.2. Demographic Characteristics and Long-Distance Travel 

The analysis of the association between demographic characteristics and long-

distance travel follows the same structure as the previous section with regard to intra-

regional travel.  The number of long-distance tours per month is analyzed by income 

group, household size, and vehicle ownership, respectively.   

4.5.2.1. Household Income 

The association between household average number of long-distance tours per 

month and annual income is presented in Figure 4.17.  The positive correlation is less 
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conspicuous in Figure 4.17 than in the case of intra-regional travel presented in Figure 

4.14.  Households with annual incomes lower than $75,000, i.e. income groups 1 and 2, 

display similar monthly number of long-distance tours of about 0.3, whereas households 

with annual incomes higher than $75,000, i.e. income groups 3 and 4, display similar 

monthly number of long-distance tours of around 0.5.  However, the overall differences 

are not significant. 
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Figure 4.17 Monthly Number of Long-Distance Tours by Income Group 

m=94 households 
 
 
 

Including both the between-household and within-household information, Figure 

4.18 provides more insight into the variability in monthly number of long-distance tours 

with regard to income.  The information presented in Figure 4.18 has a few implications.  
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First, there is a positive association between monthly number of long-distance tours and 

household income, as evidenced by the fact that the percent of households that never 

conducted long-distance tours during the study period within each income group 

decreases as household income increases.  Second, within each income group, there is 

significant between-household variability.  The few households that show significantly 

larger numbers of long-distance tours within each income group have contributed to the 

wide confidence intervals in Figure 4.17.  Third, the large amount of within-household 

variability implies that the average number of long-distance tours per month inferred 

from the Commute Atlanta long-distance dataset may not be reliable.  The significant 

within-household variability in monthly number of long-distance tours accentuates the 

nature of long-distance travel as rare events, and hence a longer survey period needed to 

obtain reliable means. 
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Figure 4.18 Between-Household and Within-Household Variability in Number of Long-

Distance Tours per Month by Income Group 
Each error bar represents a household 

4.5.2.2. Household Size 

The association between monthly number of long-distance tours and household 

size, as shown in Figure 4.19, does not show a significant positive correlation.  Single-

person households show the smallest average number of long-distance tours per month, 

but three-person households do not seem to conduct significantly more long-distance 

tours.  Furthermore, all multi-person households (households with two or more people) 

show similar number of long-distance tours per month.   
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Figure 4.19 Number of Long-Distance Tours per Month by Household Size 

m=94 households 

 

4.5.2.3. Vehicle Ownership 

Figure 4.20 indicates that the positive correlation between number of long-

distance tours per month and total number of vehicles is not significant, similar to the 

associations seen in Figure 4.17 and Figure 4.19 for household income and household 

size, respectively.  Households that own only one vehicle show a significantly smaller 

number of long-distance tours per month than other households.  Households with two 

(2) or more vehicles do not show significantly different numbers of long-distance tours 

per month.   
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Figure 4.20 Number of Long-Distance Tours per Month by Total Number of Vehicles 

Owned 
m=94 households 

 
 

 

To summarize, the associations between long-distance travel and demographic 

characteristics such as income, household size and vehicle ownership appears less strong 

than that between intra-regional travel and these demographic characteristics in the 

Commute Atlanta datasets.  The less conspicuous association between long-distance 

travel and demographic characteristics does not mean that such association does not exist, 

but only implies that:  1) long-distance tours are rare events and therefore require a larger 

sample size and a longer survey period, and  2) long-distance travel could be more 

significantly associated with other factors that are not available in the current dataset, 

such as the presence of out-of-town relatives. 
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4.6. Summary 

This chapter conducted exploratory analysis of the data to showcase the 

differences between variability that arises from between-household and within-household 

sources, and to visualize patterns in intra-regional and long-distance travel against 

temporal and demographic factors.  Perhaps the most important implication of the 

exploratory data analysis is that the sources of variability in longitudinal data are many - 

natural temporal rhythms arising from day-of-week and seasonal effects, between-

household demographic differences, and unexplained variability within a household, just 

to name a few.  Demographic characteristics of a household tend to change over the 

course of a long-term panel study, and will often result in changes in travel behavior, as 

will be discussed in detail in Chapter 5.  Exogenous factors such as gasoline prices are 

also likely to influence travel behavior, and will be adjusted through regression analysis 

for before-and-after studies in Chapter 10.   

As evidenced in this chapter, longitudinal data provide an opportunity to partition 

these different sources of variability, whereas cross-sectional data cannot.  This notion 

will be formalized statistically in Chapter 7. 
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CHAPTER 5  

TEMPORAL VARIABILITY IN HOUSEHOLD DEMOGRAPHICS 

AND ITS IMPACTS ON TRAVEL BEHAVIOR STUDIES 

 

This chapter summarizes key household demographic features generally known to 

be correlated with household travel patterns and discusses how these features were 

observed to change over time in the Commute Atlanta sample.  The potential impact of 

changing demographics is at the heart of the uncertainty associated with assessment of 

whether a transportation policy played a role in changing the participants’ travel patterns.  

In the Commute Atlanta study, the policy measure was mileage-based pricing incentives, 

as described in Chapter 3. 

Potential impacts of pricing incentives are overlaid upon the impacts of other 

pricing elements (i.e. changes in gasoline price), which introduces uncertainty.  However, 

as will be revealed in this chapter, changing household demographic characteristics 

appears introduce a much more potent effect on the response results and greater 

uncertainty in pricing response.  Furthermore, these changes may have very different 

impacts on different households as a function of their original and final demographic 

characteristics.  Large portions of the variability simply cannot be explained within the 

existing sample.  The purpose of this chapter is to address the magnitude of within-

household variability potentially introduced by changes in household demographic 

characteristics, and therefore emphasize the importance that analyses of panel data should 
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control for these confounding factors when aiming at quantifying causal effects 

associated with changes in household travel patterns over time. 

5.1. Unstable Household Demographics 

Every trip in the Commute Atlanta database is associated with specific vehicle 

information, specific household information, and specific primary driver information 

based on the survey information we received.  During the study period, participating 

households underwent continuous demographic changes.  Monthly mailings allowed the 

households to report changes in time, but some uncertainty is introduced give that 

demographic changes are not always reported at all or reported accurately in a timely 

manner.  Detailed data processing, as described in Chapter 3, helped reveal these 

unreported household demographic changes, so these additional uncertainties are likely 

eclipsed by the impact of the household demographic changes occurring during the study 

period.  These demographic changes raised significant challenges in data analysis and 

required the implementation of a case study approach (Xu, et al., 2009a). 

The Commute Atlanta study differs from traditional cross section travel diary 

studies in that this study was conducted as a longitudinal study spanning multiple years.  

Household characteristics such as household size, household structure, economic status, 

and vehicle ownership change over time.  The longer the study duration, the more 

changes take place.   

Of the 95 households in the case study, only 28 households remained stable with 

respect to all six major demographic characteristics: home location, work status, 

household structure, income, school(s) attended, and vehicle ownership.  Two households 
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had as many as eight major demographic changes over the 21-month study period (see 

Figure 5.1). 
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Figure 5.1 Number of Households Experiencing Elements of Instability 
 
 
 

Figure 5.2 summarizes the findings of demographic changes across the six 

categories, wherein each bar represents the percentage of the 95 households that 

experienced that type of change during the study.  When changes are summarized across 

the six change categories, the most common change experienced was that of vehicle 

ownership (40%), followed by work status (34%).  The bottom part of each bar represents 

the percentage of the households that experienced a certain change as the only 

demographic change, whereas the upper part of each bar represents the percentage of the 

households that experienced a certain change among other types of demographic changes.  
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The impacts of vehicle ownership changes on household travel appear to be a significant 

element that will be analyzed using a regression approach in Chapter 9. 
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Figure 5.2 Percent of Households Experiencing Each Type of Change 
 
 

5.2. Impact of Demographic Changes on VMT 

Among the households that experienced demographic changes during the study 

period, the research team determined that the changes reported by 63 households in their 

monthly surveys could also be confirmed through analysis travel patterns.  Of these 63 

households that experienced changes, 21 experienced more than one type of demographic 

change.  That is, these 21 households had changes in at least two of the six demographic 

characteristics.  Among the remaining 42 households in which only one type of change 
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occurred, 3 experienced home location changes, 13 underwent job-related changes, 5 

exhibited household structure changes, 6 experienced income changes, 2 had school 

changes, and 13 had vehicle ownership changes.  The changes within each demographic 

category are described in more detail in the following sections. 

5.2.1. Home Location Changes Only 

One household moved to a location closer to work.  Not surprisingly, the research 

team observed an overall VMT decrease of 48.7% for this household.  Based on the 

analysis of travel patterns by day of week, time of day, and trip purpose, it appears that 

the change of home locations dominated the reduction.  The other two households that 

changed home location did not display trends that are as clear as the one above.  While 

one could argue that road pricing may incentivize households to move closer to their 

work, it is not logical to argue that the Commute Atlanta study provided significant 

incentive.  Therefore, any VMT reductions experienced by this household should not be 

included in an aggregate response analysis. 

5.2.2. Work Status Changes Only 

The impact of work status changes on travel patterns is probably most obvious 

among all demographic changes.  Almost without exception, total VMT increases when 

the commute distances increase, or when a new household member starts to work, and 

vice versa when commute distances decrease or a household member stops working.  

Pricing incentives are unlikely to have influenced this change.  Therefore, any impacts 

associated with job changes need to be controlled for in any aggregate response analysis. 
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5.2.3. Income Changes Only 

The relationship between the direction of income change and that of VMT change 

was very interesting.  Only one household exhibited a VMT decrease when household 

income decreased.  The self-employed, senior citizen in this one-person household retired 

from a full time job during the study period (i.e., correlated with work status change).  

The household income went from between $30,000 and $75,000 to below $30,000 and 

VMT did decrease accordingly.  Another household increased VMT as income increased.  

In the other four cases, the change in VMT went in the opposite direction of income 

change.  Two (2) households experienced income increase from between $30,000 and 

$75,000 to between $75,000 and $100,000, but their VMT decreased by 24% and 35% 

respectively.  The other 2 household experienced an income decrease but the VMT in 

both households increased by approximately 9%.  In one household, the income went 

from above $100,000 to between $30,000 and $75,000.  In the other household, the 

income went from above $100,000 to between $75,000 and $100,000.  But, none of these 

households had annual incomes below $30,000.  On the contrary, most households had 

annual incomes above $75,000.  There are not enough households experiencing these 

changes to draw any conclusions, but additional work in this area seems warranted to 

determine if there is a direct relationship and if any income threshold levels may play a 

role in income change vs. VMT change. 

5.2.4. Household Structure Changes Only 

Among the 5 households in which household structure changes were the only type 

of change, 4 exhibited intuitive trends.  VMT increases when new members join the 

household and vice versa.  In one household, however, VMT increased after a spouse 
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(wife) passed away.  However, without further information about this household, such as 

the health conditions of the husband and the wife prior to passing, it is very difficult to 

draw any conclusions even for this single case study. 

5.2.5. School Attended Changes Only 

Changes in schools attended usually coincided with other types of changes, 

especially when households move or change jobs.  There are only two cases in which 

changes in schools attended were the only type of the changes.  In one case the two 

children in the household went to college and graduate school.  Although the household 

did not report to the research team whether or not the two children moved out of the 

household, a 12.8% VMT reduction was observed in this household.  In the other case, 

the child changed levels of school from middle school to high school (freshman level, 

non-driver) and the impact on total household VMT was not discernible. 

5.2.6. Vehicle Ownership Changes Only 

The VMT changes across the 13 households experiencing vehicle ownership 

changes exhibit mixed results.  The changes range from -39.6% to 105.7%.  A vehicle 

purchase does not necessarily lead to an increase in VMT.  Likewise, selling a vehicle 

does not necessarily come with VMT reductions.  The impact of vehicle ownership on 

total travel and upon specific travel by region and purpose warrants further investigation.  

To this end, pricing studies need to ensure that driver-vehicle relationships are updated in 

as timely a manner as possible.  Hand-me-down vehicle drivership (selling an older car, 

changing the old commute vehicle into a general purpose vehicle, and purchasing a new 

commute vehicle) occurs in the households and can be observed through analysis of 

changes in travel patterns across vehicles when a vehicle change occurs. 
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5.2.7. Children Turning 16 

Six households had children that turned 16 during the study period.  Generally, 

none of these households were able to reduce their total VMT.  Because the sample size 

is very small, it is basically not possible to single out the impact of children turning the 

driving age on the household travel patterns.  Table 5.1 summarizes the characteristics of 

these 6 households.  The demographic instability of these households makes the analysis 

especially difficult.  More advanced statistical methods will need to be adopted to analyze 

the impact of children turning 16 on household travel behavior, and will be reported 

separately in future research.  Another major obstacle is that the households did not 

usually report the percentages of time that each household member drove certain vehicles 

in a timely manner.  Thus, the research team often was not able to tell if the child who 

turned 16 actually started driving (additional detailed analysis of trip end locations will 

be required to make this determination).  Future studies need to link new drivers to their 

vehicle activity through special-purpose surveys triggered when the child turns 15 

(learner’s permit) and 16 (licensure). 
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Table 5.1 Summary of Households with Children Turning 16 
Total 
VMT 
Change 

Household 
Structure 

Major Change Type GT Sample Group 

-0.5% Single mother 
with one child None 3 

2.2% Single mother 
with one child School attended 3 

20.5% Couple with two 
children 

One person started a new job 
Vehicle turn-over 8 

27.1% Couple with 
three children 

One child moves to college 
Wife starts full time job 
One child starts to drive 

5 

34.2% Couple with 
three children 

Schools attended 
Work status and income drop 
Vehicle turnover 

5 in the baseline 
period 
1 in the pricing period

43.9% Couple with 
four children 

One child moved out to college 
Income increase 
Discrepancies between reported 
and revealed demographic 
changes 

7 in the baseline 
period 
8 in the pricing period

 
 
 

5.3. Overall VMT Changes and Demographic Characteristics 

Overall VMT changes during the nine months of the pricing period in all 

households range from a 12,172 mile decrease to a 9,597 mile increase.  As shown in the 

overall histogram chart in Figure 3, a few cases present extreme VMT reduction or 

increase.  On the quarterly basis, Quarter 1 observes the highest number of households 

with VMT reductions.  This reduction likely resulted from the high gas prices after 

Hurricane Katrina, which occurred during the Quarter 1 pricing period.  Quarter 3 

displays the most cross-sectional fluctuations, which could possibly be attributed to the 

seasonal effects. 
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 Figure 5.3 VMT Changes between Baseline and Pricing Periods 
 
 
 

5.3.1. Households with VMT Reductions 

A total of 53 of the 95 households exhibited a reduction in VMT, ranging from -

63.1% to -0.2%.  In 12 of these 53 households, demographic changes were the likely 

reason for the reductions.  Nine (9) households experienced work status changes, 

including retirement and job location changes that reduced commute distances.  Such 

changes appeared to be dominant contributors to the VMT reduction.  One (1) of the 53 

households, composed of a single person in retirement, experienced a significant decrease 

in income during the study period.  The income drop combined with the pricing 

incentives may be related to the noted VMT reduction of 4.7%, as opposed to the pricing 

incentives.  Changes in household structure were the likely causes for VMT reductions in 

two households.  In one five-person, multi-generational household, the fact that the 
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daughter moved out to college seems to have led to the 28.5% reduction in VMT based 

upon travel pattern analysis. 

Of the remaining households, the research team finds it difficult to attribute VMT 

reductions to any particular demographic changes.  Ten (10) are likely to have been 

affected by the pricing scheme within the context of their household demographic 

characteristics.  Eight (8) of these 10 households consisted of household members older 

than 60, 5 of the 10 households were single-person households and 9 of the 10 did not 

experience any major demographic changes.  In the one household that had a 

demographic change, a rise in income was observed, but did not seem to affect the 

household’s travel pattern significantly (and would be expected to increase rather than 

decrease travel).  The consistent trend of decreasing VMT across quarters for this 

household makes the research team suspect that the reduction was associated with pricing 

incentives (the combined effect of gasoline price increase and experimental pricing 

incentives).  In this household, one member started to take transit in the pricing period, 

contributing to their 23.9% change in VMT.  However, this change in travel behavior 

could as well be attributable to a change in employer policy (e.g. provision of free 

MARTA passes) that was not reported.  The accessibility of the work location to a 

MARTA station makes the change of travel modes possible for this household, but not 

for the majority of other households in the study.  Future studies will need to incorporate 

focus groups to ascertain the causal relationship. 

The reasons behind the VMT reductions exhibited in 33% of the households are 

unclear.  Among them, 14 households remained demographically-stable during the study 

period from October 2004 to June 2006.  Among the remaining 17 households with major 
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demographic changes, 8 had changes in vehicle ownership.  The impact of vehicle 

ownership changes is not obvious from the current level of analysis and therefore 

warrants further study.  The other 11 households had various changes in other aspects of 

demographic characteristics, but the impacts were not intuitive.  For these households, it 

is especially important to conduct home interviews so that the research team can learn 

about the travel decision making process.  It would also be helpful if the record for 

household changes was more precise, providing more details of the exact date of the 

changes. 

5.3.2. Households with Increased VMT 

Forty-two (42) households exhibit increases in VMT, ranging from 0.2% to 

130.6%.  In 11 of the 42 households, demographic changes were the likely reasons for the 

increase.  Ten (10) households experienced work status changes, some including job 

location changes that increased reduced commute distances and starting new jobs.  Such 

changes appear to be major contributors to the VMT increase.  One (1) of the 42 

households that experienced a significant household structure change wherein two 2-

person households moved in together, causing the two-person household to become a 

four-person household.  Not surprisingly, this is the household that experienced an 

increase in VMT of 130.6%. 

Of the remaining 31 household, it was difficult to explain why the VMT increase 

was observed.  Nine (9) of the 31 households remained stable during the study period, yet 

the increase in VMT reached as high as 53.1%.  Eight (8) of the 31 households had more 

than one major demographic changes and most often theses changes would affect VMT 

in different directions.  It is difficult to single out the impact of each change.  On rare 
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occasions, especially when the research team had detailed records of demographic 

changes, the impacts of changes on travel patterns could be separated, as showcased in 

the third example case study presented later.  Of the remaining 14 households in which 

only one demographic change took place, two (2) households changed home locations, 

one (1) changed work locations, two (2) changed household structures, one (1) changed 

schools attended, three (3) changed income, and five (5) changed vehicle ownership.  

These changes did not have impacts on travel patterns that met research expectations and 

warrant further surveys on the households’ travel decision making process. 

As mentioned earlier, four (4) out of the five (5) households where a child turned 

16 during the study period also displayed VMT increase.  Although this is likely the 

cause of much of the VMT increase, it cannot be attributed to the new driver without 

much more detailed trip-level analysis as all 4 households experienced multiple 

demographic changes and it is difficult to single out the effect of driving age children. 

5.4. Analysis across Demographic Characteristics 

5.4.1. Summary by Sample Groups 

During the study period, 76 households remained within the same sample group 

for the entire 21-month period.  To focus on exploring pricing sensitivity in the context of 

demographic characteristics, these 76 households were considered relatively stable, 

despite the other various demographic changes these households experienced. 

The percentage of households with VMT reductions among all households within 

the same sample groups tends to decrease as the households become larger in size and 

have higher incomes.  However, this trend is not statistically significant given the small 

sample size and should not be generalized.  Even though these households stayed in the 
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same sample groups, there are plenty underlying demographic changes that could have 

affected this trend in one direction or the other.  Figure 5.4 summarizes changes of VMT 

in these relatively stable households by sample groups. 
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Figure 5.4 VMT Change: Distribution of Relatively Stable Households by Sample 

Groups 
 
 

5.4.2. Senior Households 

Thirty-three (33) households include household members older than 60, and 19 of 

these 33 households reduced VMT from the baseline period to the pricing period.  

Thirteen (13) of the 33 households were stable in terms of demographic changes and 10 

of these 13 reduced VMT.  Lower income senior households may have responded to the 

pricing scheme.  As the household income increases, senior households may be less 

responsive to pricing incentives even if they have the flexibility to change their travel 
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patterns.  Again, however, the trend is not statistically significant.  In addition, trip 

purpose information may be crucial to evaluating the potential response of senior 

household travel to economic incentives.  Factors such as biomedical needs of the senior 

household members, their routine social activities such as visits to friends, church and 

community services, and how independent the senior people are of their children or other 

types of assistance may play a large role in their response. 

5.4.3. Households in which Workers are Self-Employed 

Eight (8) households in the sample reported that the workers in the households 

were self-employed.  None of these households reduced VMT, despite the fact that one 

household experienced a significant decrease in annual income from above $100,000 to 

between $30,000 and $75,000.  No clear trends in travel pattern changes are identifiable, 

either at the overall level or by time of day and by trip purpose.  To better understand the 

travel patterns for these households, more information is needed, such as the type of 

business, operating hours and days, business travel needs, and percentage of commercial 

use VMT for each vehicle (the Commute Atlanta survey questions only identified 

whether a vehicle was used for business purposes1).  Identification of each business-

related trip, which would be very difficult to undertake in a longitudinal study involving 

thousands of trips, would help to quantify household travel responses (if any) to pricing. 

                                                 
1 Elango, et al. (2007) pointed out that vehicles reported as used for business purposes display significantly 
different travel patterns from other household vehicles and need to be analyzed separately. 
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5.5. A Closer Look at Three Case Studies 

5.5.1. Case I: Mileage Reduction due to Work Location Change 

This household consists of a single, full-time working mother with 2 children.  

The participant changed her work location in the middle of March 2006 and her one-way 

commute distance decreased from around 17 miles to around 7 miles.  Figure 5.5 shows 

the daily average VMT of weekday inside-of-region travel by month during the baseline 

and pricing periods.  Daily average VMT were significantly lower for weekday inside-of-

region travel from April to June 2006 after the work location changed.  Researchers also 

observed significantly VMT reduction in October 2005 compared to the same month in 

2004.  However, a detailed check of the commute pattern revealed that the person only 

commuted to work 9 days in October 2005 compared to 18 days in October 2004 and was 

outside-of-town for around 10 days in October 2005.  Hence, the lower October result is 

likely not attributable to pricing. 
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Figure 5.5 Weekday Intra-Regional VMT by Month 

 
 

5.5.2. Case II: Mileage Reduction for a Retired Household 

This household is composed of one low-income ($20k-$29k) retired person.  

Figure 6 shows the inside-of-region and outside-of-region travel for this household by 

month, with the net incentives juxtaposed.  This household seems responsive to the 

incentives (including gas incentives and the pricing incentives) since mileage reduced for 

all the pricing months compared to the baseline months.  Researchers observed especially 

large reductions in October 2005 and April 2006.  October 2005 is the first month when 

pricing initially started and April 2006 is the first month when pricing incentive increased 

to 15cent/mile.  Gasoline prices also experienced spikes during these two months 

compared to the same months previous year.  For outside-of-region travel, the researchers 

observed a very stable pattern in VMT per month.  It looks like that there are two or three 
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destinations that the household visited regularly.  These travel needs are hard to eliminate 

and hence stayed consistent during both baseline and pricing periods. 

 
 

 
 

Figure 5.6 Total VMT by Month (Intra-Regional and Outside-of-Region Travel) with Net 
Incentives Overlay 

 

5.5.3. Case III: Multiple Demographic Changes and the Combined Impact on 

Travel Patterns 

This household went through seven demographic changes during the 21-month 

study period.  This household consists of a two-person household with two vehicles.  The 

two participants in this household were roommates and were not related.  Both 

participants were in the 20-30 age group.  Both were in graduate school from the start of 

the study until May, 2005, and both started working in June, 2005 in downtown Atlanta.  
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One member moved out of the household (with her vehicle) in early April, 2006.  Due to 

all these changes, the household income fluctuated, from below $30,000 per year, to 

above $ 75,000, and then to between $30,000 and $75,000 thousand per year after the 

move-out.     

Overall, the household had a 13.1% decrease in VMT, primarily because during 

the third quarter in Phase II one of the household members moved out and the mileage 

from this individual no longer contributed to the household total.  This major 

demographic change was the primary factor in the overall 13.1% decrease in VMT.  

Figure 5.7 illustrates the overall decrease of VMT in the third quarter caused by the 

household structure change. 

 
 

 
Figure 5.7 VMT Change by Quarter 

 
 
 

More detailed analysis of travel patterns by day of week and time of day helps 

reveal the impact of work status changes on VMT change.  There are apparent 

differences between the lifestyles of a student and a full time worker.  When the 
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household members started working, they traveled more in the morning on weekdays and 

became more active during weekends and holidays.  The research team was able to 

explain the travel pattern changes for this household because this household provided 

detailed information for every major demographic change. 

5.6. Implications on Sample Size Planning for Before-and-After Studies 

The total vehicle miles of travel (VMT) within the 95 households for which valid 

baseline and pricing data were collected decreased by about 3% over the 9-month pricing 

period.  However, the noted reduction is not statistically significant due to large between-

household and within-household travel variability.  That is not to say that a reduction in 

vehicle miles of travel did not occur, only that the observed reductions were small, and 

that researchers could not state with any degree of certainty that the noted reduction in 

travel was associated with the pricing incentives or any other causal factor.  The change 

was small enough that the reductions could simply be associated with random chance. 

The detailed case studies for the 95 households were designed to examine changes 

in household travel patterns in response to pricing incentives (gasoline price increases 

coupled with mileage incentives).  Each case study was conducted within the context of 

noted changes in household demographic and employment conditions, such as home 

location, work status, household structure, income, schools attended, and vehicle 

ownership.  These individual case studies are an interesting read as a stand alone report, 

and all case studies are presented in the Appendix to the Commute Atlanta Phase II case 

study report (Xu, et al., 2009a).  The biggest finding in this research was the magnitude 

of variability in household travel behavior.  These case studies provided clear and 

convincing evidence that there is both natural intra-household variability as well as some 
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potentially extreme variability resulting from demographic changes in such panel studies.  

The clear inference is that much larger sample sizes and improved survey design will be 

required in longitudinal studies to ascertain how pricing affects travel behavior.  

Therefore the findings of similar studies1 that have been conducted should be eyed with 

caution and that researchers need to be careful in drawing any conclusions on the impact 

of pricing incentives from these studies. 

Based upon analysis of the Commute Atlanta households, mileage incentives had 

little discernable impact on VMT reduction, due to large inter- and intra- household 

variability and demographic instability.  10 households were identified in which the 

pricing incentives may have influenced their travel behavior.  These households are 

generally stable in terms of key demographic characteristics.  Nine (9) of these 10 

households had annual incomes below $75,000, three (3) of which had incomes below 

$30,000.  Eight (8) of these households consist of people older than 60.  Half of these 10 

households are single-person households.  The reductions observed in these households 

may be associated with pricing incentives, but other unknown factors could also have 

contributed to the reductions.  Such correlation would need to be verified by stated 

preference surveys. 

Among the demographic changes, the impact of work status changes was most 

discernible.  Home location changes and household structure changes are also important 

sources of VMT change.  Due to the small sample size, it is unclear how changes in 

income, schools attended, and children turning 16 affect travel behavior.  The impact of 

                                                 
1 As mentioned in Chapter 2, these studies include the reports for Minnesota Mileage-Based User Fee 
Demonstration Project, the Oregon Road User Fee Pilot Program, and Washington Traffic Choice Study 
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vehicle ownership change on VMT also requires further investigation, as will be 

demonstrated in Chapter 9.   

In conclusion, on the disaggregate level, mileage incentives may have affected 

some households within the context of gasoline price fluctuations and household 

demographic changes.  However, there are no statistically significant findings that can be 

reported.  Significantly larger samples (much larger numbers of participating households 

within each demographic stratum, and much larger samples than what have been reported 

in other relevant studies reported in the literature) need to be coupled with more intensive 

surveys with improved designs.  Experimental controls over households that use their 

vehicles for business purposes also need to be introduced, possibly as a separate 

recruitment stratum.  Accessibility to viable commuter transit is also an essential control 

variable in future studies, as households that have viable transit access maybe much more 

likely to respond to economic incentives.  Other confounding factors are many, and the 

analyses in this chapter has demonstrated the importance of adjusting for such 

confounding factors in the design and analysis stages of a panel study. 
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CHAPTER 6  

THE TREND OF MEANS VERSUS SURVEY LENGTH 

 

This chapter examines the impacts of survey length and sample size on the 

precision level of key travel behavior variables for both intra-regional and long-distance 

travel.  Previous studies have shown sample size benefits of conducting short multi-day 

travel surveys, but no one has studied sample size impacts if the survey spans for multiple 

months or even years.  For example, using the Reading data, Pas (1986) has shown how 

three-day data from a 75-person sample and two-day data from a 91-person sample give 

the same level of precision in parameter estimates as a 1-day sample of 136 persons.  

Additionally, Stopher et al. (2008b) have presented that a 7-day GPS survey offers a 65 

percent reduction in sample size needed for a conventional one-day diary survey, and a 

15-day GPS survey offers a 70 percent reduction.  The length of the Commute Atlanta 

study has provided an excellent opportunity to not only provide additional evidence that 

multi-day travel surveys offer sample size savings, but also to expand the existing 

findings to a wider range of survey lengths.   

Using both the original data from the Commute Atlanta study and synthetic data 

re-sampled from the original dataset, the sample size impacts of various survey lengths 

are examined for both intra-regional and long-distance travel. 
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6.1. Intra-Regional Travel 

Two inferences were chosen for analysis: number of trips per household per day 

and VMT per household per day.  The analysis pools two survey waves together—

baseline and pricing.  Each wave is for 9 months (273 travel days). 

6.1.1. Observations from the Original Sample 

First, the impact of longer survey lengths on inference estimation is first 

examined in Figure 6.1 and Figure 6.2.  These two figures show the results of 

successively adding the means over the 273 days of the two waves for number and VMT 

of intra-regional trips per day.  In both figures, the results show instability in the mean for 

the first 60 days and then show a gradual trend to stabilize through the 90th day.  After 90 

days, the number of intra-regional trips stabilizes to around 5.8 and the intra-regional 

VMT stabilize to around 37.  To understand the instability of the means during the first 

60 days, a look at the sampling distribution of the means will be provided through Monte 

Carlo studies in the subsequent sections. 
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Figure 6.1 Cumulative Mean of Daily Number of Intra-Regional Trips for Different 

Survey Lengths with the Fixed Start Date (October 1, 2004).   
m=95 households, n=546 repeated observations. 
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Figure 6.2 Cumulative Mean of Daily Intra-Regional VMT for Different Survey Lengths 

with the Fixed Start Date (October 1, 2004).   
m=95 households, n=546 repeated observations. 
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6.1.2. Monte Carlo Study of One-Month Samples 

To remove the possible seasonal effect as discussed in Section 4.2 on the patterns 

observed in Figure 6.1 and Figure 6.2, a re-sampling technique is applied to examine the 

trend of means and confidence intervals as the sample size and sample size vary.  The 

general procedure of resampling is to first randomly draw a household, and then 

randomly draw a date and include the data from a certain number consecutive days 

thereafter.  This procedure is repeated 1000 times to produce a bootstrap distribution of 

the means.  The first exercise includes one month of data for each drawing of a 

household.  The next section simulates a 2-day travel survey. 

Since the transportation modelers and planners are mainly interested in weekday 

travel, the analysis focuses only on weekdays.  The weekday records are extracted from 

the original dataset to form the pool for resampling.  The number of days for each 

drawing of a household is 20 (5 weekdays×4 weeks in a month).  Figure 6.3 and Figure 

6.4 show the results of cumulative means for the number of intra-regional trips per 

weekday and intra-regional VMT per weekday, respectively. 
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Figure 6.3 Cumulative Mean Number of Intra-Regional Trips per Weekday as Sample 

Size Increases; Survey Length = 20 Weekdays 
 
 
 

The wide confidence interval of number of trips and VMT shown in Figure 6.3 

and Figure 6.4 emphasize the instability of the means when sample size is small.  In both 

figures, the confidence intervals start to tighten after 200 households.  The number of 

intra-regional trips per weekday stabilizes to around 6 and the intra-regional VMT per 

weekday stabilizes to around 41, both higher than the values observed in Figure 6.1and 

Figure 6.2 where both weekdays and weekend days are included. 
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Figure 6.4 Cumulative Mean Intra-Regional VMT per Weekday as Sample Size 

Increases; Survey Length = 20 Weekdays 
 
 

6.1.3. Monte Carlo Study of Two-Day Samples 

To compare the impact of a longer survey period on the trend of cumulative 

means to that of conventional two-day travel diaries, two consecutive weekdays are re-

sampled randomly at each drawing of a household.  The resulting cumulative means of 

number of intra-regional trips per weekday and intra-regional VMT per weekday are 

presented in Figure 6.5 and Figure 6.6, respectively. 
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Figure 6.5 Cumulative Mean Intra-Regional Number of Trips per Weekday as Sample 

Size Increases; Survey Length = 2 Weekdays 
 
 
 

When the survey length is 2 weekdays, the cumulative means show similar trends 

as those when the survey length is 20 weekdays—the confidence intervals are very wide 

when the number of households is below 200, and start to tighten after the sample size 

reaches 200 households.  The number of intra-regional trips per weekday stabilizes to 

slightly more than 6 and the intra-regional VMT per weekday stabilize to around 41.  If 

the data conformed to normal distribution and the observations were independent, the 

widths of the 95% confidence interval shown in Figure 6.5 and Figure 6.6 should be 

about 10 times as wide as those shown in Figure 6.3 and Figure 6.4 because the survey 

length is 20 weekdays in the previous case and 2 weekdays in this case.  However, the 

widths of the confidence intervals in Figure 6.5 and Figure 6.6 are only slightly tighter 
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than those in Figure 6.3 and Figure 6.4.  For example, with 1200 households, the two-day 

sample provides a confidence interval of 3.79 for daily intra-regional VMT whereas the 

20-day sample gives a confidence interval of 3.11.  This phenomenon can be explained 

by within-household association that will be further explored in Chapter 8.  When 

estimating group averages, positive correlation increases variance (Diggle, et al., 2002).  

Therefore, as the survey length increases, the widths of the confidence intervals do not 

decrease at a fast rate as they would if new independent observations, i.e. new 

households, were collected. 
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Figure 6.6 Cumulative Mean Intra-Regional VMT per Weekday as Sample Size 

Increases; Survey Length = 2 Weekdays 
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Even with high degree of within-household association in weekday intra-regional 

VMT, the savings on sample size (measured in number of households) associated with 

conducting a longer survey are obvious, as shown in Figure 6.7.  Figure 6.7 overlays 

Figure 6.4 onto Figure 6.6, and zooms in on the upper confidence bounds.  To achieve 

10% relative precision of the estimate for the average intra-regional VMT per weekday, 

the upper confidence bound should be at about 451, which would require 250 households 

for a 2-day survey, or 170 households for a 20-day survey. 

 

 
Figure 6.7 Overlay of Cumulative Means from 2-Day and 20-Day Surveys 

 
 

                                                 
1 The sample mean is 41 VMT per weekday, so (45-41)/41≈ 10%. 
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6.2. Long-Distance Tours 

The inferences for long-distance travel behavior analysis are number and VMT of 

long-distance tours per month, given that long-distance travel is a relatively rare event.  

The dataset for long-distance travel consists of 30 months of data from 94 households, as 

described in Chapter 3.  January, 2004 is the starting month, i.e. Month 1. 

6.2.1. Observations from Original Sample 

Similar to the analysis of intra-regional travel, the impact of longer survey lengths 

on inference estimation is examined first, in Figure 6.8 and Figure 6.9.  Both the number 

and VMT of monthly long-distance tours show the tendency to stabilize as the survey 

length increases, with the fixed start date of the study on January 1, 2004.  The seasonal 

impact is more prominent in long-distance travel than intra-regional travel.  As the survey 

starts in January, 2004, both the number and VMT of long-distance tours show very low 

values, and then continue to increase steadily through Month 7, which is July, 2004.  This 

trend confirms the seasonality discussed in Section 4.2.2.  After the 7th month, the curves 

still show some evidence of seasonality, but the effect of pooling more data each month 

becomes dominant, in that the curves tend to level off during the last six months of the 

survey. 
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Figure 6.8 Cumulative Mean of Monthly Number of Long-Distance Tours for Different 

Survey Lengths with Fixed Starting Month of January 2004 
 m=95 households, maximum n=30 repeated observations. 
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Figure 6.9 Cumulative Mean of Monthly VMT of Long-Distance Tours for Different 

Survey Lengths with Fixed Starting Month of January 2004 
 m=95 households, maximum n=30 repeated observations. 
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6.2.2. Monte Carlo Study of Two-Day Samples 

The motivation of this analysis is to examine to capability of two-day travel 

diaries to identify long-distance tours.  A synthetic pool of two-day samples is generated 

the same way as described in Section 6.1.3, except for the fact that weekend days are 

included, given the nature of long-distance travel. 

Table 6.1 summarizes the long-distance tours identified by two-day surveys as the 

sample size increases.  Section 6.1.3 showed that a sample of 200 households with two-

day surveys can provide relatively stable means (with relative precision a little more than 

10%) of key travel behavior variables with regard to intra-regional travel.  In the context 

of long-distance travel, however, a sample size of 200 household does not seem to 

provide reliable inferences.  As shown in Table 6.1, only two long-distance tours are 

indentified in the sample provided by the first 200 households, which equates 0.15 long-

distance tours and 53 long-distance VMT per month.  Both these values are only about 

half of the actual sample means.  When the sample size reaches 400 households, the 

monthly number of long-distance tours starts to stabilize, but the monthly long-distance 

VMT continues to fluctuate. 
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Table 6.1 Long-Distance Tours Identified in Synthetic Two-Day Sample 

Number of 
Households 

Number of Long-Distance 
Tours Identified 

Total VMT of 
Long-Distance 

Tours Identified

Inferred Monthly 
Number of Long-
Distance Tours1 

Inferred Monthly 
Long-Distance VMT2

100 1 365 0.15 55 
200 2 710 0.15 53 
300 4 2,306 0.20 115 
400 8 3,497 0.30 131 
500 11 4,147 0.33 124 
600 13 4,992 0.33 125 
700 14 5,362 0.30 115 
800 16 5,812 0.30 109 
900 19 7,414 0.32 124 
1000 20 7,902 0.30 119 
1100 23 8,396 0.31 114 
1200 25 9,767 0.31 122 
1300 25 9,767 0.29 113 
1400 26 10,216 0.28 109 
1500 31 12,358 0.31 124 
1600 33 13,553 0.31 127 
1700 35 15,047 0.31 133 
1800 36 15,887 0.30 132 
1900 38 17,049 0.30 135 
2000 40 18,367 0.30 138 
 
 
 

The instability of inferences about long-distance travel is only one reason why 

two-day surveys may not be sufficient for long-distance travel analysis.  The short survey 

period also makes it very difficult to study the distributional properties of long-distance 

tours over time.  A longitudinal design, however, is able to provide insights into temporal 

distributions, as will be formalized statistically in Chapter 7 and discussed in detail using 

the Commute Atlanta dataset in Chapter 8. 

                                                 
1 Monthly number of long-distance tours = number of long-distance tours identified / (number of 
households×2 days / 30 days in a month) 
2 Monthly long-distance VMT = total long-distance VMT identified / (number of households×2 days / 30 
days in a month) 
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6.2.3. Trade-offs between Sample Size and Survey Length 

The sample size analysis for long-distance travel takes a slightly different 

approach than that for intra-regional travel, because long-distance travel is a much rarer 

event than intra-regional travel.  As demonstrated in Section 6.2.2, 2000 two-day samples 

only identified 40 long-distance tours.  It would be unreliable to draw estimates of the 

means about long-distance travel based on 40 long-distance tours.  Therefore, this section 

takes advantage of the long survey period (30 months) that Commute Atlanta data 

provided to relate sample size to allowable error.  The allowable error e, also known as 

relative precision, dictates that, given the confidence level 1 α− , the required sample size 

is 

 
2 2
1

2

z CVN
e
α−= ,      (6.1) 

where CV stands for the coefficient of variation and Std DevCV
Mean

= 1.  Adopting 

this formula, Figure 6.10 plots the required survey length for each household, based on 

their average monthly number of long-distance tours.  The dots represent the values 

calculated from the empirical standard deviation and mean, and the line represents the 

expected survey length assuming the Poisson distribution for each household.  The 

goodness-of-fit of the Poisson distribution will be formally examined in Section 8.1.3, 

but the Poisson assumption provides a good approximation at this point.  The implication 

of Figure 6.10 is that the number of months required follows the inverse of the mean, i.e. 

                                                 
1 15 households in the Commute Atlanta long-distance dataset did not undertake any long-distance tours 
between January 2004 and June 2006.  Given this definition of allowable error, the 15 households have to 
be excluded from this analysis because the mean number of long-distance tours is zero, and would therefore 
render the coefficient of variation meaningless. 
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1/ λ , assuming the Poisson distribution characterized by the mean and variance λ , 

because (6.1) now becomes 

2
1

2

1zN
e

α

λ
−= ⋅ . (6.2) 

This means that the surveys for households that travel long-distance infrequently 

should be longer than the ones for those who travel long-distance frequently.  This could 

be very difficult to implement in survey practice.  Therefore, for certain demographic 

groups that do not make frequent long-distance travel, one would wish to recruit more 

households in exchange for the survey lengths. 

One caveat in interpreting Figure 6.10 is not to extrapolate the curve towards 

zero.  It will be very expensive to achieve the relative precision target for households that 

travel long-distance very rarely or never.  The more practical way to reflect long-distance 

travel behavior in such households is to study their demographic characteristics from a 

pilot study or previous experience, and to draw a number of households from this 

demographic group, comparable to the numbers of households in other demographic 

groups in the survey. 
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Figure 6.10 Required Survey Lengths to Achieve 10% Relative Precision  

m=79 households1 
 
 
 

The large number of months required for a household, as the average monthly 

number of long-distance tours decreases, appears prohibiting.  However, for a given λ ,  

it is possible to trade the survey length for the sample size.  Figure 6.11 shows the 

number of households required if the survey lasts for 12 months and if the survey lasts for 

24 months.  According to Figure 6.11, if the survey length is 12 months, 960 households 

that only travel once every 30 months are needed to obtain a 10% relative precision at a 

95% confidence level.  The implication is that if through prior experiences and/or pilot 

studies, the researchers have some understanding of the association between demographic 

groups and their long-distance travel frequency, the number of households needed within 

                                                 
1 The 15 households that did not undertake any long-distance tours during the study period were excluded 
from the 94 households. 
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each demographic group can be decided by estimating the λ  within that demographic 

group.  Such association will be explored in Chapter 9. 

Sample Size Requirement
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Figure 6.11 Required Numbers of Households Given Certain Survey Length, with Regard 

to the Average Monthly Number of Long-Distance Tours 
 
 

6.3. Summary 

This chapter examined the impacts of different sample sizes and survey lengths on 

the reliability of estimated means about key travel behavior variables for both intra-

regional and long-distance travel.  Resampling techniques were applied to generate 

random samples for this purpose.   

The results for intra-regional travel show that, to obtain a reliable estimate of the 

population average of a travel behavior variable, a longer monitoring period such as a 

month provides savings on sample size (number of households), compared to 

conventional two-day surveys, in addition to potential benefits as reviewed in Chapter 2 
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that a longer monitoring period may be able to provide information on various trip 

purposes, route choices and arrival / departure times.  To achieve 10% relative precision 

for estimating the average intra-regional VMT per weekday, a two-day survey would 

require 250 households and a 20-day survey would require 170 households based on the 

Monte Carlo analysis of the Commute Atlanta data.  Such a trade-off amounts to more 

than 30% of savings on the number of households needed when the survey length 

increases from two days to 20 days for obtaining 10% relative precision. 

With regard to long-distance travel, which can be considered rare events, a larger 

sample size is needed to achieve stability in estimated means, compared to the desired 

sample size for intra-regional travel.  The cross-sectional nature of two-day surveys also 

prevents separating temporal distributions from cross-sectional effects.  Readers are 

referred to subsequent chapters for more detailed discussions on longitudinal and cross-

sectional information. 
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CHAPTER 7  

STATISTICAL APPROACH 

 

This chapter introduces the formal statistical approach for the sample size 

analyses that will be conducted in subsequent chapters for regression models and before-

and-after studies.  The basis of the statistical approach in this dissertation is the 

generalized estimating equation (GEE) procedures proposed by Liang and Zeger (1986), 

which is an extension of generalized linear models (GLMs) to correlated data.   

The first section of this chapter introduces the model formulation and notation.  

The second section discusses the differences between cross-sectional information and 

longitudinal information, both which are present in panel data and can be at odds if not 

treated with care.  The discussion of cross-sectional and longitudinal information is of 

essence of this dissertation in that sample size requirements will vary based upon the 

study objective - whether the longitudinal information is the main concern or the cross-

sectional information is.  The third section briefly discusses the design efficiency of panel 

studies, providing a rationale for conducting panel studies from the pure statistical point 

of view.  The fourth section outlines the sample size estimating methodology based on 

GEE procedures.  This methodology is adapted from the work of Rochon (1998). 

7.1. Model Formulation and Notation 

This research, like most longitudinal analyses, takes the statistical approach of a 

regression model such as the linear model, or the generalized linear model as described in 

Diggle, et al. (2002) 
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   ijijppijijij xxxY εβββ ++⋅⋅⋅++= 2211 .   (7.1) 

In this model notation, ijY  represents a response variable, such as the number of 

trips per day or the VMT of long-distance travel per month, at time ijt , for observation 

j =1,…, in  on subject i =1,…, m .  1ijx , 2ijx ,…, ijpx  represent p  explanatory variables 

at ijt .  In the context of travel demand modeling, the explanatory variables can be 

household demographic characteristics, pricing incentives, gas prices, and temporal 

variables such as days of week and seasons.  1, pβ β⋅⋅ ⋅  are unknown regression 

coefficients.  Typically, 1ijx = 1 for all i and all j, and 1β  is then the intercept term in the 

linear model.  E( ijY ) = ijμ  and Var( ijY ) = ijv  represent the mean and variance of ijY .  ijε  

is a zero-mean random variable that represents the deviation of the response from the 

model prediction.  The distribution of ijε  determines the form of the regression model. 

In matrix notation, equation (7.1) takes the form 

 'ij ijY ε= +ijx β ,  (7.2) 

and the regression equation for the ith subject takes the form 

 = +i i iY X β ε , (7.3) 

where: ijx  is a vector of length p of explanatory variables 1ijx , 2ijx ,…, ijpx , 

iX  is a in p×  matrix with ijx  in the jth row, 

iY  is an ni-vector representing the set of repeated outcomes for subject i,  

β = ( 1, pβ β⋅⋅ ⋅ ), and 

iε = ( 1, ,
ii inε ε⋅⋅ ⋅ ). 
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E( iY  ) = ijμ  represents the mean of iY  whereas Var( iY )= Vi, where the jk element 

of Vi is the covariance between ijY  and ikY , denoted by Cov( ijY , ikY ) = vijk.  Ri denotes the 

i in n×  correlation matrix of iY .  The responses for all units are denoted by 

( , , )= ⋅⋅⋅1 mY Y Y  , which is an N-vector with N = 
1

m
ii

n
=∑ .  Note that a cross-sectional 

study can be represented using this model form with ni=1. 

It is very important to emphasize that the cross-sectional effect of an explanatory 

variable, x, on response, Y, can be very different from the longitudinal effect.  For 

example, from a cross-sectional perspective, the daily VMT of a household is probably 

positively correlated with household size.  However, in a longitudinal study, a certain 

two-person household could very well reduce travel, especially long-distance trips, 

substantially as a new-born baby arrives.  In this case, the daily VMT is negatively 

correlated with household size.  Therefore, it is important to differentiate the cross-

sectional effect from the longitudinal effect. 

To formalize this idea, let us adopt the notation given above, and begin with a 

simple model of the form 

0ij ij ijY xβ β ε= + + , j = 1," , ni; i = 1," , m. (7.4) 

If one re-expresses (7.4) as  

 0 1 1( )ij i ij i ijY x x xβ β β ε= + + − +  , (7.5) 

the model will fail to reflect the difference between the cross-sectional effect due to xi1 

and the longitudinal effect represented by xij-xi1.  Therefore, Diggle, et al. (2002) 

suggested a model of the form 

 0 1 1( )ij C i L ij i ijY x x xβ β β ε= + + − + , (7.6) 
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so that both the cross-sectional effect Cβ  and the longitudinal effect Lβ  can be examined 

separately.  Diggle et al. (2002) showed that the least-squares estimate of β  derived from 

the model (7.4) is a biased estimate of Lβ . 

7.2. Longitudinal and Cross-Sectional Information 

The assessment of within-subject changes in the response over time, Lβ  can only 

be achieved by a longitudinal study design (Fitzmaurice, et al., 2004).  The design of the 

Commute Atlanta study is to measure an initial cross-sectional sample repeatedly through 

time, making it possible to make comparisons of longitudinal (or within-subject) and 

cross-sectional (or between-subject) estimates of changes in the response with respect to 

endogenous factors such as demographic changes and exogenous factors such as gasoline 

prices and policy measures.  Chapter 5 presented such comparisons qualitatively.  This 

section will elaborate on the concepts of longitudinal and cross-sectional effects that were 

formalized in the previous section in the context of the empirical experiences of the 

Commute Atlanta study. 

As noted in Chapter 5, the initial sample of the Commute Atlanta study were 

recruited according to household income, household size and vehicle ownership, but the 

demographic characteristics of individual households underwent significant changes.  For 

example, initially, the total number of vehicles owned by a household ranges from one (1) 

to six (6).  In the course of the study, the household that owned one (1) vehicle could 

purchase new vehicles and own three (3) vehicles at the end of the study.  As a result, 

there are two potential sources of information about changes in VMT with changes in 

vehicle ownership.  First, there is cross-sectional (or between-household) information 
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about how VMT differ with regard to vehicle ownership in the initial baseline 

observations obtained in October 2004, since households enter the study with different 

total numbers of vehicles.  Second, there are longitudinal (or within-household) effects 

that arise because households are measured repeatedly over time, yielding measurements 

of VMT when an individual household owns different numbers of vehicles.  It is possible 

that these two sources of effects provide conflicting information about how VMT change 

with vehicle ownership. 

To distinguish these two sources of effects has important implications on 

transportation planning.  Cross-sectional information is crucial to understanding the 

current travel demand of a region.  For an over-simplified example, if transportation 

planners have a correct estimate of the cross-sectional effects of vehicle ownership on 

VMT, the overall VMT of a region can be estimated with the distribution of population 

by vehicle ownership.  Such cross-sectional information, however, is not adequate for 

long-term forecasting, unless transportation planners also have a correct estimate of the 

longitudinal effects of vehicle ownership on VMT.  For illustration purposes, a synthetic 

numerical example can be adopted.  Assume a cross-sectional effect of vehicle ownership 

on VMT, Lβ , of 10%.  That is, if household A owns two (2) vehicles and household B 

owns one (1) vehicle, household A conducts 10% more VMT than household B in a 

given time period.  This effect, however, may not be the rate of increase in VMT when 

household B owns two (2) vehicles.  The longitudinal effect may be 20%.  Therefore, if 

the long-term trend in a region is that most households will increase their total number of 

vehicles owned, the total VMT will increase by 20% indicated by the longitudinal effect, 

rather than by 10% indicated by the cross-sectional effect.  If the cross-sectional effect 
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was used for the forecasting future VMT trend, the increase would be underestimated.  

Unfortunately, the conventional two-day travel surveys are by nature cross-sectional, and 

therefore can only provide estimates of cross-sectional effects. 

7.3. Design Efficiency 

Design efficiency is defined as e =Var( l Lβ )/Var ( lCβ ).  The smaller the value of 

e, the more efficient the design is, and therefore, the more information is gained by taking 

additional measurements on each subject. 

Diggle, et al. (2002) examined in detail that longitudinal studies tend to be more 

efficient than cross-sectional studies, even when Cβ = Lβ .  Given the same number of 

subjects, m, the efficiency measure e takes on different forms according to the forms of 

the correlation matrix R, and is influenced by  

• n - the number of repetitions (assuming ni = n for all i)  

• the ratio between the averaged within subject variation in 
the between-subjects variation in  at visit 1

x
x

δ −
= , and 

• ρ - correlation among the repeated observations 

Generally, e is a decreasing function of δ  and n.  The value of ρ  can impact e in 

either directions, based on the values of δ  and n. 

7.4. Sample Size Requirements 

One important implication from the above discussion of efficiency is that, 

assuming Cβ = Lβ , given a certain value of e, and a level of precision, the number of 

subjects needed for a longitudinal study, mL, can be estimated as 

 L Cm m e= ⋅ .  (7.7) 
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This equation demonstrates that, from a pure statistical standpoint, a longitudinal 

study always reduces the required sample size, given a certain research objective.  This 

conclusion provides theoretical rationale especially for short-term multi-day household 

travel surveys because in the context of travel demand modeling, the cross-sectional 

effects of explanatory variables, such as demographic characteristics and land use 

characteristics, can be seen as approximately the same as the longitudinal effects within 

the short survey period. 

When Cβ ≠ Lβ , the discussion becomes much more complicated than merely the 

reduction the sample size in a longitudinal study compared to a cross-sectional study.  In 

this case, a cross-sectional study simply cannot reflect Lβ , and therefore is not suitable 

for the study of change.  In a longitudinal setting, the number of repeated observations 

per subject, n, needs to be balanced against the sample size, m, and may be constrained 

by practical considerations such as budget, technological availability, and correspondent 

fatigue. 

The remainder of this section reviews the statistical approaches for sample size 

estimation given different research objectives in the context of travel demand analysis.   

7.4.1. Travel Demand Modeling 

One important task of this research is to emphasize adopting the appropriate 

modeling approach for panel surveys.  As the GPS technology makes it possible to 

extend survey lengths, the modeling approach required for data analysis differs from the 

conventional approaches that have been used for cross-sectional surveys.  The sample 

size analysis, therefore, should be applied based on the modeling technique that accounts 

for correlations in longitudinal designs.   
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This research uses the generalized estimating equation (GEE) approach of Liang 

and Zeger (Liang and Zeger, 1986) to model key travel behavior measurements.  GEE is 

a well known technique for analyzing longitudinal data (Rochon, 1998).  It extends the 

generalized linear model (GLM) of McCaullagh and Nelder (1989) to correlated 

observations and can be readily implemented in statistical software packages such as 

SPSS and R.  This section first reviews the formulation of GLMs in the cross-sectional 

situation, and then outlines the basic assumptions of GEE that extend the applications to 

longitudinal data. 

7.4.1.1. Generalized Linear Models 

GLMs unify regression models for independent, discrete and continuous 

responses (McCullagh and Nelder, 1989).  In GLMs, the mean response, ( )i iE Yμ = , is 

assumed to be related to a vector of covariates, x, through 

( )ih μ = '
ix β . 

The function ( )h ⋅  is called the link function.  In linear regression, ( )i ih μ μ= ; in 

Poisson regression, ( ) log( )i ih μ μ= . 

The variance of Yi is a specified function of its mean, iμ , namely, 

( ) ( )i i iVar Y v vϕ μ= = , 

where the known function ( )v ⋅  is referred to as the variance function and ϕ  is the scaling 

factor.  For some members of the GLM family, ϕ  is a known constant, whereas in others 

it is an additional parameter to be estimated. 

Each class of GLMs corresponds to a member of the exponential family of 

distributions, with a likelihood function 
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 ( ) exp{[ ( )] / ( , )}i i i i if y y g c yθ θ ϕ ϕ= − + , (7.8) 

where iθ  is known as the natural parameter related to iμ  through ( ) /i i igμ θ θ= ∂ ∂ .  Some 

distributions within the exponential family include the Normal distribution, the Poisson 

distribution, the two-parameter gamma distribution, and the Tweedie distribution as will 

be discussed in detail in the subsequent chapter.  To illustrate (7.8), consider the Poisson 

distribution, where 

logi iθ μ= , ( ) exp( )i ig θ θ= , ( , ) log( !)i ic y yϕ = − , 1ϕ = . 

The regression coefficients, β , can be estimated by solving the estimating 

equation, 

 1

1
( ) ' { ( )} 0

m
i

i i i
i

v Yμ μ−

=

∂
= − =

∂∑S(β) β
β

,  (7.9) 

where ( )i iv Var Y= .  The solution lβ  is the maximum likelihood estimate and can be 

obtained through algorithms available in most statistical software packages. 

7.4.1.2. Generalized Estimating Equation Approach 

The GEE approach were formalized by Liang and Zeger (1986) to extend the 

GLM to accommodate correlated data.  GEEs are suitable for marginal models to 

characterize the marginal expectation of a set of outcomes as a function of a set of 

explanatory variables (Horton and Lipsitz, 1999; Diggle, et al., 2002).  The term 

“marginal” indicates that the model for the mean response depends only on the covariates 

of interest, and not on any random effects or previous response, in contrast to mixed 

effects models, where the mean response depends on both the covariates and a vector of 

random effects (Fitzmaurice, et al., 2004).  Marginal models are appropriate for travel 

demand analysis because in such analysis, inferences of the population-average, rather 
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than subject-specific, are the focus.  This research will adopt marginal models as the 

modeling basis for sample size estimation. 

A marginal model has the following assumptions (Diggle, et al., 2002): 

1. the marginal expectation of the response, E(Yij) ijμ= , depends on explanatory 

variables, xij, by ( )ijh μ β= ijx '  where ( )h ⋅  is a known link function such as the 

log for counts (the Poisson distribution); 

2. the marginal variance depends on the marginal mean, by Var( ) ( )ij ijY v μ ϕ=  where 

( )v ⋅  is a known variance function and φ  is a scale parameter which may need to 

be estimated; 

3. the correlation between Yij and Yik is a function of the marginal means and 

perhaps of additional parameters α , namely, Corr( , ) ( , ; )ij ik ij ikY Y ρ μ μ= α  where 

( )ρ ⋅  is a known function. 

 

In a marginal model, the regression of the response, Yij, on explanatory variables 

is modeled separately from within-subject correlation.  Therefore, a separate model for 

the association among observations from each subject must be specified.  The estimating 

procedures using the generalized estimating equations (GEE) approach is discussed in 

detail in (Liang and Zeger, 1986) and (Prentice and Zhao, 1991).  Software packages are 

available for estimating the coefficients. 

7.4.2. Before-and-After Studies  

Before and after studies are effective for police analysis.  Since household travel 

surveys are essentially observational studies, it is important to adjust major confounding 
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effects through regression modeling.  Consequently, such an adjustment needs to be 

appropriately acknowledged for sample size estimation.   

Rochon (1998) gave a generalized procedure for sample size analysis for 

longitudinal studies.  In the paper and the associated SAS codes Rochon (1998) provided 

the required input parameters as shown in Table 7.1.  Subsequently, each category of 

parameters will be discussed in detail with applications in travel behavior studies. 
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Table 7.1 Input Parameters for Sample Size Analysis in Longitudinal Studies 
Parameters Descriptions 

τ  A (1 T× ) vector indicating the follow-up times. 
X  An ( ST r× ) design matrix1 for the study.  r is 

the number of explanatory variables.  A (T r× ) 
design matrix sX  is defined for each of the S 
subpopulations, whereupon they are stacked on 
top of each other. 

Design of the 
Study 

μ  An ( S T× ) matrix of expected values stμ  under 
the model, where there are S subpopulations of 
interest and T time points. 

( )h μ  The link function to be used in the analysis, 
including identity, log, logit, etc. 

( )v μ  The variance function for Yij to be used in the 
analysis, taking the possible forms of Gaussian, 
Poisson, Gamma, and Bernoulli2. 

Underlying 
Stochastic 
Mechanism 

ψ  A scale parameter signifying under- ( 0 1ψ< < ) 
or over- ( 1ψ > ) relative to the underlying 
stochastic model. 

φ  The autocorrelation parameter. Correlation 
Structure (See 
expression in 
Section7.4.2.3) 

θ  The “damping” parameter.  The correlation 
structure becomes the AR(1) model when θ =1 
and the exchangeable model when θ =0. 

H  An ( h r× ) hypothesis matrix among the 
elements of linear model parametersβ .  The 
hypothesis is written as 0Hβ = h . 

0h  An ( 1h× ) vector of constant terms under the 
null hypothesis expressed above. 

α  Type I error rate. 

Research 
Question 

γ  Type II error rate. 
ω  A (1 S× ) vector providing the relative sizes 

{ }sω  across the different subpopulations in the 
asymmetric allocation problem. 

Other Design 
Considerations 

π  An ( S T× ) matrix of probabilities { }stπ  for 
staggered entry and attrition.  

 
 

                                                 
1 A design matrix is a matrix of explanatory variables. 
2 The Tweedie distributions are not included in Rochon’s algorithm. 
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7.4.2.1. Design of the Study 

Number of Repeated Observations T and Follow-up Times τ 

Depending on the context of a study, the number of repeated observations T can 

be viewed as the number time points collected in the survey, i.e. number of days, weeks, 

months, or years.  Each column of the 1 T×  vector τ indicates the time when the jth 

observation takes place.  For example, for the long-distance travel analysis presented in 

Section 9.2, there are 30 equally-spaced time points (i.e. months), so { }1, 2, , 30=τ " . 

Number of Subpopulations S 

It is common practice in travel surveys that the entire population is stratified into 

several subpopulations based on key demographic characteristics such as household size, 

income, vehicle ownership, etc.  Given the growing trend of activity-based modeling 

approach, the number of subpopulations in the travel survey and modeling practices has 

increased to provide more precision.  For example, the Atlanta Regional Commission 

uses more than 100 combinations of household size, number of workers, income and age 

in their forthcoming activity-based model.  The larger number of subpopulations is likely 

to require larger samples. 

Design Matrix X 

As demonstrated in Chapter 5, various confounding effects influence household 

travel behavior, making it difficult to single out a certain policy effect.  For example, 

response to pricing can be confounded by endogenous factors such as income, household 

size, and vehicle ownership, and exogenous factors such as gasoline prices and the 

overall economic trend, as discussed in the literature review.  Therefore, it is important to 
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account for the confounding effects in the design stage and include them in the design 

matrix.  For example, a design matrix can take the form of  

11 1 11 1

1 1

p q

s

T Tp T Tq

p q

x x z z

x x z z
=X

" "
# % # # % #

" "
���	��
���	��


, p + q = r 

where there are p variables of interest, e.g. policy effects, and q confounding 

effects.  This configuration indicates that if researchers control for all confounding 

factors with proper subpopulation planning and comprehensive regression variables, a 

study is able to draw solid conclusions.  

This notation implies that each subpopulation should be homogenous.  In other 

words, within each subpopulation, a variable x or z takes the same value for all 

households at the jth time point, i.e. 

ijk jkx x= , 1, , si m= " , 1, ,j T= " ,  1, ,k p= " , and 

ijl jlz z= , 1, , si m= " , 1, ,j T= " , 1, ,l l= " , 

where ms is the number of households in subpopulation s.  This is difficult to 

achieve in reality, but is reasonable to assume during the design stage.  Such notation 

therefore requires a careful stratification process and a realistic understanding of the 

nature of the confounding effects. 

In the context of transportation policy analysis, e.g. value pricing, jx  would 

represent p=1 dummy variables with values 

1 if subject receives pricing incentives,
0 if subject does not receive incentives.jx
⎧

= ⎨
⎩
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Alternatively, jx  could represent p=1 variables indicating the amount of the incentives, 

with example values 

0 cents/mile,
50 cents/mile,

100 cents/mile.
jx

⎧
⎪= ⎨
⎪
⎩

 

Similarly, confounding effects can be categorical, nominal or continuous, 

including household demographic characteristics such as household size, income, vehicle 

ownership and age, external economic variables, such as gas prices, and temporal 

variables such as season / month of the year and day of week. 

Expected Values μ 

This matrix specifies the expected values of an outcome variable (i.e. VMT, 

number of trips, etc) for each subpopulation at each time point.  Such specifications 

require knowledge from pilot studies and the expected smallest detectable difference.  

When the confounding effects are many and tend to change during the study, as was 

observed in Commute Atlanta study, regression analysis from previous studies is 

especially helpful.  

7.4.2.2. Underlying Stochastic Mechanism 

As discussed in Chapter 6, the widely applied normal distribution does not fit 

travel behavior data very well.  Rather, the Tweedie family of distributions fit daily or 

monthly VMT data well, and Poisson distribution fits the number of trips / tours data well.  

For Poisson distribution, the canonical link function is the log link.  For Tweedie 

distributions, both the log link and the identity link could be used.  The dispersion 

parameter ψ  can be estimated by data from pilot studies.   
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7.4.2.3. Correlation Structure 

Various common structures may be appropriate for modeling the working 

correlation matrix among the repeated measures.  Horton and Lipsitz (1999) reviewed the 

definitions and examples of common working correlation models as seen in various 

software packages.  Among the common structures are the exchangeable structure, which 

takes the form 

1
1

1

ρ ρ
ρ ρ

ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # % #
"

 

and the first-order autoregressive, also known as AR(1), which is defined as  

,

1,

,u v u v

if u v
r

otherwiseρ −

=⎧⎪= ⎨
⎪⎩

 

where u and v are the following-up times when two repeated observations are 

taken. 

In travel behavior applications, the correlation between the travel behavior 

measures taken within the same household may decrease as the time between the two 

repeated measures is longer, thus violating the assumptions of the exchangeable structure, 

but the rate of the decrease is smaller than the exponential decay prescribed by the AR(1) 

model.  Therefore, a “damped” exponential correlation structure described in Muñoz, et 

al. (1992) is considered.  This structure is defined as 

1,
( , )

,uv
uv

if u v
r

otherwise
θδ

φ θ
φ

=⎧⎪= ⎨
⎪⎩
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where uv u vδ τ τ= − .  1φ <  is the correlation between observations separated by 

one unit of time.  0θ ≥  is a ‘damping’ parameter that permits attenuation ( 0 1θ< < ) or 

acceleration ( 1θ > ) of the exponential decay of correlation.  This research takes 0 1θ< <  

to reflect common knowledge in travel behavior studies. 

7.4.2.4. Research Question 

In most before-and-after travel behavior studies, there is only one targeted policy 

effect, such as the mileage-based pricing incentive, or a toll road facility.  Therefore, in 

the null hypothesis 0Hβ = h , 0h  is a h=1 parameter, and H is a (1 r× ) vector 

[
1

0 0 1
r−

"��	�
 ]. 

As common practice (Muthen and Muthen, 2002), the Type I error rate α  will be 

set to 0.05 and the Type II error rate γ  will be set to 0.2. 

7.4.2.5. Other Design Considerations 

Differential Allocation ω 

In travel behavior studies, differential sample allocation across the subpopulations 

is often desirable.  For example, practitioners usually tend to favor the treatment group 

and keep the control group size relatively small.  The vector ω characterizes the 

proportions of samples in each subpopulation. 

Suppose that there are m households in the first subpopulation.  The number of 

households in the sth population can be expressed as mωs, where ω1=1 and ωs for 2s ≥  

are the known numbers of individuals required in the sth subpopulation relative to the first. 
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Staggered Entry, Administrative Censoring and Dropout π 

The issue of missing data is common in longitudinal travel studies, especially 

surveys with a GPS component.  This issue arises for a variety of reasons.  Staggered 

entry could occur because households are typically recruited over a period of time.  Or, 

some members of a household may move out and form a second household and stay in 

the study.  Administrative censoring (Frangakis and Rubin, 2001) occurs when the 

research team loses contact of a household and cannot obtain their updated demographic 

information, or when there are equipment issues.  Households could also choose to opt 

out during the study.   

Each element πst in the matrix π represents the proportion of the sample in the sth 

subpopulation expected to provide the first t evaluations before being censored, lost to 

follow-up or dropout.  The derivation of the { }stπ  will be illustrated in Section 10.6 with 

the numerical example. 
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CHAPTER 8  

DATA CHARACTERISTICS AS INPUTS FOR THE GENERALIZED 

ESTIMATING EQUATION PROCEDURES 

 

The previous chapter reviewed the statistical formulation of the generalized 

estimating equations (GEE) procedures for longitudinal data analysis.  This chapter 

characterizes the properties of the intra-regional and long-distance travel data that are 

needed to specify the three assumptions for the GEE procedures (Diggle, et al., 2002) 

outlined in Chapter 7, namely: 

1. the marginal expectation of the response, E(Yij) ijμ= , depends on explanatory 

variables, xij, by ( )ijh μ β= ijx '  where ( )h ⋅  is a known link function such as the 

log for counts, i.e. number of intra-regional trips and number of long-distance 

tours (the Poisson distribution); 

2. the marginal variance depends on the marginal mean, by Var( ) ( )ij ijY v μ ϕ=  where 

( )v ⋅  is a known variance function and ϕ  is a scale parameter which may need to 

be estimated; 

3. the correlation between Yij and Yik is a function of the marginal means and 

perhaps of additional parameters α , namely, Corr( , ) ( , ; )ij ik ij ikY Y ρ μ μ= α  where 

( )ρ ⋅  is a known function. 
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The first two assumptions correspond to the standard generalized linear model as 

described in Section 7.4.1.1, and the third assumption, the within-subject association 

among the repeated responses, represents the main extension of generalized linear models 

to longitudinal data (Fitzmaurice, et al., 2004).  The GEE approach for marginal models 

do not require distributional assumptions for the observations, but a basic understanding 

of the range and nature of the outcome variable is beneficial to choosing the link and 

variance functions (Hardin and Hilbe, 2002).  Consequently, the first section of this 

chapter examines the distributional properties in response to the first two assumptions, 

and the second section explores the within-subject association among repeated 

observations.  

8.1. Data Distribution 

Measurements of the magnitude of travel, such as daily intra-regional VMT and 

monthly long-distance VMT, have the property that they are positive and continuous, 

except for the possibility of exact zeroes when travel does not occur.  Data with exact 

zeros are common (Smyth, 1996), for example, weather variables such as rainfall and 

wind speed, and population sizes in ecology (Perry and Taylor, 1985).  In travel behavior 

studies, zero values occur when households do not make any trips in a particular time 

period.  As noted in Section 4.3, about 11% of all household-days in the Commute 

Atlanta Pricing study data set observed no trips. 

Such data cannot be modeled by the four most common distributions used in 

generalized linear models discussed in McCullagh and Nelder (1989), namely the normal, 

Poisson, gamma and inverse-Gaussian, but can be modeled using a family of exponential 
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distributions intermediate between the Poisson and the gamma families, namely the 

Tweedie distributions. 

Tweedie distributions have been applied to a wide array of fields such as actuarial 

studies, meteorology and climatology, and biomedical applications.  For example, 

Jørgensen and De Souza (1994) used the Tweedie distributions to model the total costs of 

insurance claims, where the authors assumed Poisson arrival of claims and gamma 

distributed costs for individual claims.  Dunn (2003) modeled precipitation, where the 

occurrence of precipitation can be modeled as the Poisson distribution and the amount of 

precipitation at each occurrence can be modeled as the gamma distribution.  Smyth 

(1996) provides an example of studying the relationship between children’s gastro-

esophageal reflux and sleeping positions using the Tweedie distributions. 

The transportation field is not generally familiar with the Tweedie distributions.  

Intuitively, however, travel behavior data can be modeled using these distributions, 

considering total VMT in a given time frame as a sum of VMT by several trips or tours.  

The data will include exact zeros when households do not travel during that time period. 

This chapter will first introduce the mathematical formulation of the Tweedie 

family of distributions, using long-distance travel as an illustration.  Then, the suitability 

of Tweedie distributions to both intra-regional and long-distance travels are formally 

examined respectively.   

8.1.1. The Formulation of Tweedie Family of Distributions 

Assume any long-distance tour i results in a distance measured in miles Ri, and 

that each Ri has a gamma distribution Gam( ,α γ− ), where the mean is αγ−  and the 

variance is 2αγ− .  Then, assume the number tours in any one month, say N, has a 
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Poisson distribution.  This implies that there will be months with no long-distance tours 

when 0N = .  The total monthly VMT of long-distance tours, Y, can be found as the 

Poisson sum of the gamma random variables so that 

1 2 NY R R R= + + +" , 

where N has a Poisson distribution with mean and variance λ . 

An identical argument can be applied to daily VMT of intra-regional trips, when 

Ri could refer to the intra-regional trips recorded on any one day, and Y the total daily 

VMT. 

The distribution of Y has been widely called a compound Poisson distribution 

(Feller 1968; Bar-Lev and Stramer 1987; Jørgensen and De Souza 1994; Smyth and 

Jørgensen 2002).  The resulting probability function can be written as 

 
, for 0

log ( ; , )
log log ( , , ), for 0p

y
f y y y W y p y

λ
μ ϕ

λ ϕ
γ

− =⎧
⎪= ⎨− − − + >⎪⎩

 (8.1) 

where  

γ =ϕ (p-1) μ p-1 

λ= μ 2-p/[ϕ  (2-p)], and  

(1 )
1

( 1)( , , )
(2 ) ! ( )

j j

j j
j

y pW y p
p j j

α α

αϕ
ϕ α

−∞

−
=

−
=

− Γ −∑  

 

The mean of the distribution is μ  and the variance is var[ ] pY ψμ= , where 0ψ >  

is a dispersion parameter and 1 2p< <  is the index which determines the compound 

Poisson distribution.  Importantly, the probability of recording no long-distance tours in a 

given month is: 
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2

Pr( 0) exp( ) exp
(2 )

p

Y
p

μλ
ϕ

−⎧ ⎫
= = − = −⎨ ⎬−⎩ ⎭

 

The compound Poisson distributions belong to the class of distributions known as 

the Tweedie family of distributions, named by Jørgensen (1987; 1997)  after Tweedie 

(1984).  Tweedie distributions have a variance of the form var[ ] pY ϕμ=  for (0,1)p∉ .  

The index p defines the type of distributions as follows (Dunn, 2003): 

• For 0p < , the data y are supported on the whole real line.  However, applications 

for these distributions are unknown 

• For 0p = , the distributions become the normal distribution 

• For 1p =  with 1ϕ = , the distributions become the Poisson distribution 

• For 1 2p< < , the distributions are the compound Poisson distributions as 

discussed 

• For 2p = , the distributions are the gamma distribution 

• For 2p > , the distributions have a similar shape to the gamma but are 

progressively more right-skewed as p gets larger 

 

As shown in equation (8.2), mathematically, the Tweedie distributions are best 

characterized using the ( , , pμ ϕ ) parameterization.  In transportation applications, 

parameterization in terms of ( , ,λ γ α ) is more straightforward, where λ  refers to the 

mean number of long-distance tours per month, γ  to the shape parameter of the 

distribution of number of tours, and αγ−  to the mean distance of long-distance tours per 

tour.  The transformation between the two sets of parameterizations are summarized as 
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λ= μ 2-p / [ϕ  (2-p)] 

γ =ϕ  (p-1) μ p-1 

α = (2-p) / (1-p) 

Because the Tweedie distributions belong to the exponential family of 

distributions, upon which GLMs are based, there is a framework readily available for 

fitting models based on these distributions and for diagnostic testing (McCullagh and 

Nelder, 1989). 

Although no closed forms exist for evaluating the density function or cumulative 

distribution functions of the Tweedie distributions, programs exists to provide fast and 

accurate algorithms for estimating parameter values (Dunn and Smyth, 2005) and to 

allow the computation of quantile residuals (Dunn and Smyth, 1996) in diagnostic 

analysis. 

8.1.2. Intra-Regional Travel Data Distributions 

8.1.2.1. Daily Intra-Regional VMT 

A probability density plot can provide a visual summary of how the random 

variable is distributed, including symmetry, skewness and disperseness, among many 

others (Kvam and Vidakovic, 2007).  Kernel density estimation is a statistical method 

that disperses the probability mass of each observation smoothly, so that a good visual 

presentation of the probability distribution function can be obtained.  Figure 8.1 shows 

the kernel density estimation of the daily VMT of intra-regional trips.  The density plot 

indicates that the data are heavily right skewed and that there is a high concentration of 

observations at or around zero.  However, this plot does not fully reflect the nature of the 
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data distribution in that kernel density plot is suitable for continuous data, whereas the 

daily VMT data are continuous but with exact zeros.  This nature of the data is reflected 

inconspicuously by the dual-peak shape of the density plot.  The kernel density plot 

suggests that the data distribution resembles a Tweedie distribution, but further 

examination is need. 

 
 

 
Figure 8.1 Kernel Density Estimation of Daily Intra-Regional VMT 

 
 
 

To estimate the Tweedie parameters for the daily intra-regional VMT data, the 

Tweedie package in the R statistical software is employed.  The maximum likelihood 
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estimate of μ  is the sample mean, 36.73 miles.  The Tweedie package in R produces the 

profile likelihood plot (Dunn and Smyth, 2005) for selecting the value of p is shown in 

Figure 8.2.  The resulting estimate of p is 1.43, and the estimate of ϕ  is 6.95.   

 
 

 
Figure 8.2 The Profile Likelihood Functions Showing the Maximum (log-) Likelihood 

Values of p for Daily Intra-Regional VMT per Household 
The horizontal line indicates the approximate 95% confidence interval for p. 

 
 
 

With the estimated Tweedie parameters, the density of the daily intra-regional 

VMT data can be revisited.  The Tweedie probability density function is plotted in Figure 
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8.3.  The point mass at x = 0 is characteristic of daily intra-regional VMT, indicating the 

probability of households not undertaking any intra-regional travel on a given day. 

 

 
Figure 8.3 Tweedie Probability Density Function for Daily Intra-Regional VMT 

 
 
 

To assess the quality of the fitted distributions, quantile residuals can be used, as 

defined by Dunn and Smyth (1996).  Quantile residuals are produced by inverting the 

estimated distribution function for each observation to obtain standard normal residuals 

(Dunn and Smyth, 1996).  A typical QQ-plot of these quantile residuals is shown in 

Figure 8.4, indicating that the quality of the fitted distribution on the daily level is good. 
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Figure 8.4 The Q-Q Plot of the Quantile Residuals after Fitting a Tweedie Distribution to 
Daily Intra-Regional VMT 

 
 
 

After confirming the goodness-of-fit statistically by using the QQ-plot, it is of 

interest to examine how Tweedie distributions reflect the intra-regional travel data 

practically.  Section 8.1.1 noted that the mathematical parameterization ( , , pμ ϕ ) can be 

translated into practical parameterization ( , ,λ γ α ).  Table 8.1 summarizes the maximum 

likelihood estimators of the mathematical parameters and the practical estimators.  

Despite the good quality of fit for daily intra-regional VMT shown in Figure 8.4, the 
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interpreted estimators on the trip level are less than satisfactory because the estimated 

mean number of trips per day is 1.97, much lower than the actual sample mean 5.67, and 

the estimated distance per trip is 18.66 miles, much higher than the sample mean 6.48.  

These results indicate that the Tweedie distributions may not model daily intra-regional 

VMT very well on the trip level.  This observation suggests that the adoption of Tweedie 

distribution may not be extended to estimate number of trips and distance per trip for 

studies that are mainly concerned with such trip-level travel behavior.  Nevertheless, 

Tweedie distributions can be useful for studies that are mainly concerned about the total 

VMT per time period, such as fuel consumption studies.  It is also important to note, as 

stated at the beginning of this chapter, that the GEE procedure do not require 

distributional assumptions of the data.  The goodness-of-fit of the Tweedie distributions 

only provide confidence in specifying the canonical link and variance functions that are 

associated with the Tweedie distributions when the GEE procedures are carried out in the 

next chapter.   

 
 
Table 8.1 The Maximum Likelihood Estimates of Household Daily Intra-Regional VMT  

Mathematical 
parameters 

Estimators Practical 
parameters 

Interpretation Estimators

lμ  36.73 �λ  The mean number of trips per 
day 

1.97 

lp  1.43 �γ  The shape of the distance per 
trip gamma distribution 

14.07 

�ϕ  6.95 l �αγ−  The distance per trip 18.66 

 
 

8.1.2.2. Daily Number of Intra-Regional Trips 

The underlying reason for the deviation of the Tweedie distributions with regard 

to number of trips and distance per trip from the actual sample means will be explained in 
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this section, where the Poisson assumption of daily number of intra-regional trips is 

scrutinized.   

The Poisson assumption dictates that the mean and variance are equal.  However, 

this is inconsistent with the empirical evidence in daily number of intra-regional trips.  

Table 8.2 gives the ratio of the sample variances to the means of the counts for each 

month.  Extra-Poisson variation is evident as the variance-to-mean ratios range from 3.15 

to 4.50.  This phenomenon is often referred to as over-dispersion (Diggle, et al., 2002).  

The degree of over-dispersion in the daily number of intra-regional trips is not as high as 

the biomedical examples given by Diggle et al. (2002), but nevertheless indicates the 

violation of Poisson assumption.  The extra-Poisson variation implies that there are more 

large values of daily number of intra-regional trips than one would expect if the data are 

Poisson-distributed.  This could explain why the estimated number of trips by the 

Tweedie distribution is smaller than the sample mean. 

 
 

Table 8.2 Variance to Mean Ratios for Daily Number of Intra-Regional Trips 
 Jan Feb Mar Apr May Jun Oct Nov Dec Overall
Baseline 3.69 3.47 3.15 3.43 3.28 3.91 3.75 3.71 3.80 
Pricing 4.06 3.71 3.75 4.20 4.47 4.50 3.82 3.64 3.76 

3.80 

 
 

8.1.3. Long-Distance Travel Data Distributions 

8.1.3.1. Monthly VMT of Long-Distance Tours 

The same procedure for estimating Tweedie distribution parameters for daily 

intra-regional VMT applies to monthly VMT of long-distance tours.  The maximum 

likelihood estimate of μ  for the monthly VMT of long-distance tours is the sample 
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mean, 178.14 miles.  The maximum likelihood estimates of p and φ  are calculated using 

the Tweedie package in R.  The profile likelihood plot for selecting the value of p is 

shown in Figure 8.5.  The resulting estimate of p is 1.36, and the estimate of φ  is 152.46.   

 

 
Figure 8.5 The Profile Likelihood Functions Showing the Maximum (log-) Likelihood 

Values of p for Monthly Long-Distance VMT per Household   
The horizontal line indicates the approximate 95% confidence interval for p. 

 
 

 
Similar to the case in intra-regional travel, the estimated Tweedie distribution fits 

monthly long-distance VMT well, as shown by the quantile residual QQ-plot in Figure 

8.6. 
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Figure 8.6 The Q-Q Plot of the Quantile Residuals after Fitting a Tweedie Distribution to 

Monthly Long-Distance VMT 
 

 

Table 8.3 summarizes the maximum likelihood estimators of the mathematical 

parameters and the practical estimators.  Similar to the case with intra-regional travel, the 

Tweedie distributions perform less than satisfactory in modeling tour-level long-distance 

travel activities.  The estimated mean number of long-distance tours per month is 0.29, 

when the sample mean is 0.37, and the estimated distance per tour is 617  miles, higher 
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than the sample mean 471.64 miles.  The commonality between the intra-regional travel 

and long-distance travel models is that the model tends to underestimate the mean 

number of events (trips or tours) within a time frame (daily or monthly), and therefore 

overestimate the distance traveled per event (a trip or a tour).  However, the estimated 

values of monthly number of long-distance tours and distance per tours are closer to the 

actual sample means than the estimated values of daily number of intra-regional trips.  

This can be explained by a lower degree of over-dispersion in the monthly number of 

long-distance tours, as will be discussed next. 

 
 

Table 8.3 The Maximum Likelihood Estimators of Monthly Long-Distance VMT per 
Household 

Mathematical 
parameters 

Estimators Practical 
parameters

Interpretation Estimators

lμ  176.07 �λ  The mean number of tours per 
month 

0.29 

lp  1.36 �γ  The shape of the distance per tour 
gamma distribution 

342.75 

�ϕ  151.57 l �αγ−  The distance per tour 617.34 

 
 

8.1.3.2. Monthly Number of Long-Distance Tours 

Based on the formulation of Tweedie distributions, the monthly number of long-

distance tours should follow the Poisson distribution.  However, as shown in Figure 8.7, 

the Poisson distribution does not fit the monthly number of long-distance tours very well. 
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Figure 8.7 The Q-Q Plot of the Quantile Residuals after Fitting a Poisson Distribution to 

Monthly Number of Long-Distance Tours 
 
 
 

The deviation of the empirical distribution from the Poisson assumption is also 

manifest in the ratio of the sample variance to the mean of the monthly number of long-

distance tours.  According to the Poisson assumption, the ratio should be 1.  However, the 

data has a variance-to-mean ratio of 1.53.  A explanation for over-dispersion (Diggle, et 

al., 2002) is to assume that given a mean monthly number of long-distance tours iμ  for a 

household, the ijY ’s are independent Poisson variables with mean and variance equal to 
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iμ .  The over-dispersion arises because the iμ ’s are assumed to vary across households 

according to a gamma distribution with mean μ  and variance 2ψμ , which determines 

that the distribution of ijY  has mean μ  and variance μ + 2ψμ . 

To test the first part of the aforementioned assumption, that the ijY ’s are 

independent Poisson variables with mean and variance equal to iμ , the distribution of the 

monthly number of long-distance tours is studied household by household.  The chi-

square test shows that 7 out of the 94 households have p-values smaller than 0.05, 

indicating that the null hypothesis is rejected for only about 15% of all the households.  

The independence of ijY ’s within a household can be further evidenced in Section 8.2.2.  

The distribution of the mean monthly numbers of long-distance tours by household, iμ , is 

examined against the gamma distribution to test the second part of the assumption, as 

shown in Figure 8.8.  The plot indicates that the gamma assumption of the iμ ’s is 

acceptable.  These findings help explain the deviation of monthly number of long-

distance tours from the Poisson distribution. 
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Figure 8.8 The Q-Q Plot the Quantile Residuals after Fitting a Gamma Distribution to the 

Mean Monthly Number of Long-Distance Tours by Household 
 

 

It should be noted that most count data are over-dispersed, and the degree of over-

dispersion in the monthly number of long-distance tours is modest (Cameron and Trivedi, 

1998).  In biomedical studies, the variance-to-mean ratio can sometimes be as large as 20; 

see, for example, (Diggle, et al., 2002).  The variance to mean ratio of 1.53 for long-

distance travel is smaller than that for intra-regional travel.  Therefore, in the regression 

analysis in the next chapter, this modest over-dispersion will be ignored.  Nevertheless, 

the examination of the Poisson assumption carried out in this section is an indispensible 

step that ensures the appropriateness of specifying Poisson regression for count data in 

Section 9.2. 
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8.2. Within-Household Association 

This section explores the degree of association in a longitudinal travel data set.  

The lack of independence among observations is characteristic of longitudinal data.  As 

mentioned at the beginning of this chapter, the GEE procedures for longitudinal data 

analysis requires the specification of the degree and structure of within-subject 

association.  Chapter 9 will note the impact of different correlation structures on the 

goodness-of-fit of a model.  In Chapter 9, it will become clear how the assumed 

specification of within-household association would imply different sample size 

requirements for before-and-after studies.  The purpose of this section is to characterize 

the within-household association with regard to intra-regional and long-distance travel in 

preparation for the subsequent regression analysis and sample size planning analysis. 

Graphical displays, specifically, scatterplot matrices are normally the first step to 

assess the degree of association.  If each scatterplot in the matrix appears like a sample 

from the bivariate normal distribution, the association can then be characterized with a 

correlation matrix, comprised of a correlation coefficient for each plot (Diggle, et al., 

2002). 

8.2.1. Intra-Regional Travel 

To examine the correlation structure, the number and VMT of intra-regional trips 

are summed by month.  As described in Chapter 3, there are 18 months of data altogether.   

Graphically, the correlation of intra-regional travel behavior among these 18 

months can be studied using a scatterplot matrix in which ijy  is plotted against iky  for all 



157 

1, ,18j k< = "  (Diggle, et al., 2002), thus producing 1531 scatterplots of responses from 

households at different months.  The scatterplot matrices for number of intra-regional 

trips and intra-regional VMT are shown in Figure B.1 and Figure B.2, respectively.  

Appendix B also includes a detailed description of the scatterplot matrices. 

The most important information reflected in Figure B.1 and Figure B.2 is that 

each scatterplot reasonably resembles a sample from the bivariate normal distribution. 

Therefore, it is appropriate to summarize the association with correlation matrices as 

shown in Table 8.4 and Table 8.5, comprised of a Pearson correlation coefficient for each 

plot. 

All the correlation coefficients in both tables are significant at the 0.05 level.  The 

amount of association is substantial, ranging from almost 0.9 between adjacent months to 

around 0.6 between months that are more than a year apart for the number of daily intra-

regional trips, and from 0.45 to 0.9 for daily intra-regional VMT.  The correlations show 

some tendency to decrease with increasing time lag, but the rate of decrease is slow.  The 

italic numbers highlight correlations in the months that are exactly one year apart.  The 

correlations between the same months of different years appear higher than those 

between the months that are 11 months apart (the diagonal line above the line of red 

numbers) in most cases, underscoring the impact of seasonality in travel. 

 
 

                                                 
1 153=18 choose 2 
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Table 8.4 Estimated Correlation Matrix for Number of Intra-Regional Trips 
Entries are Corr(Yij, Yik), 1 21 monthsij ikt t≤ < ≤ . 

  tij 

tik 1 2 3 4 5 6 7 8 9 13 14 15 16 17 18 19 20 
2 .85                       
3 .82 .86                     
4 .87 .88 .88                   
5 .82 .77 .78 .86                  
6 .85 .80 .85 .84 .88                 
7 .83 .83 .85 .83 .77 .88                
8 .83 .82 .85 .86 .79 .82 .89               
9 .86 .79 .78 .79 .80 .83 .83 .85              
13 .86 .75 .81 .81 .83 .87 .82 .83 .84             
14 .73 .82 .79 .77 .80 .82 .78 .74 .80 .83            
15 .78 .74 .82 .79 .80 .86 .81 .78 .81 .86 .89           
16 .79 .73 .78 .77 .79 .81 .77 .75 .78 .87 .87 .86          
17 .70 .74 .74 .75 .81 .79 .74 .76 .78 .79 .88 .87 .86         
18 .80 .83 .82 .78 .75 .81 .78 .72 .77 .80 .86 .85 .85 .88       
19 .78 .73 .77 .77 .76 .85 .82 .76 .83 .79 .79 .84 .80 .81 .86     
20 .70 .70 .69 .59 .64 .71 .65 .71 .68 .74 .77 .72 .74 .79 .82 .79   
21 .72 .58 .61 .64 .71 .77 .68 .68 .74 .80 .71 .72 .75 .68 .70 .82 .81 
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Table 8.5 Estimated Correlation Matrix for Intra-Regional VMT 
Entries are Corr(Yij, Yik), 1 21 monthsij ikt t≤ < ≤ . 

  tij 

tik 1 2 3 4 5 6 7 8 9 13 14 15 16 17 18 19 20 
2 .86                       
3 .79 .82                     
4 .85 .85 .85                   
5 .80 .80 .78 .87                  
6 .85 .78 .83 .84 .86                 
7 .85 .81 .84 .83 .78 .85                
8 .82 .80 .82 .83 .81 .82 .90               
9 .78 .69 .63 .70 .76 .73 .79 .83              
13 .75 .72 .73 .74 .78 .75 .78 .81 .80             
14 .65 .70 .70 .66 .75 .66 .71 .72 .77 .87            
15 .62 .63 .72 .70 .74 .68 .71 .73 .76 .84 .88           
16 .72 .67 .72 .70 .79 .73 .76 .76 .78 .87 .82 .85          
17 .62 .66 .64 .62 .75 .70 .66 .74 .74 .78 .86 .87 .82         
18 .76 .72 .74 .69 .71 .73 .72 .72 .77 .83 .85 .90 .84 .89       
19 .66 .60 .56 .65 .68 .68 .71 .71 .81 .78 .75 .78 .79 .83 .90     
20 .60 .57 .54 .55 .62 .64 .60 .66 .70 .73 .73 .71 .69 .83 .87 .88   
21 .61 .50 .45 .60 .70 .64 .60 .63 .78 .75 .67 .64 .69 .65 .72 .83 .81 

 
 

8.2.2. Long-Distance Tours 

As described in Chapter 3, there are 30 months of long-distance data.  Therefore 

there would be 435 (30 choose 2) scatterplots, making a scatterplot matrix too crowded.  

Therefore, only a selected number of scatterplots are presented to illustrate the 

correlations.   

Figure 8.9 shows the correlation between the numbers of long-distance tours in 

December, 2004 and January, 2005.  The scatterplot does not resemble a sample from 

bivariate normal distribution.  Therefore, a non-parametric correlation coefficient, 

namely, Spearman’s rho, is used to quantify the degree of association.  The estimate of 

the correlation coefficient is 0.48.  However, a closer look at the scatterplot shown in 
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Figure 8.9 reveals that the correlation coefficient could be misleading, because 66 of the 

93 households shown in the scatterplot did not undertake any long-distance tours at all in 

December 2004 or January 2005.  The large number of households with zero long-

distance tours may have contributed to the seemingly large correlation coefficient.  If one 

disregards the 66 zero values in Figure 8.9, little to none correlation can be detected.  

 
 

 
Figure 8.9 Scatterplot of Number of Long-Distance Tours: December 2004 versus 

January 2005  
Total valid number of households for both months = 93 

 
 
 

Figure 8.10 shows the correlations of long-distance VMT between December 

2004 and January 2005.  Again, the scatterplots do not resemble a sample from the 

bivariate normal distribution.  The nonparametric correlation coefficient is 0.49 for the 
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long-distance VMT between December 2004 and January 2005, but could be misleading 

for the same reason presented for the interpretation of Figure 8.9. 

 

 
Figure 8.10 Scatterplot of Long-Distance VMT: December 2004 versus January 2005 

Total valid number households for both months = 93 

 
 

The correlation matrices for monthly number of long-distance tours and monthly 

long-distance VMT, comprised of a Spearman’s ρ  for each pair of months, are not 

included in the main body of this document due to their sheer size, but are given in Table 

B.1 and Table B.2, respectively.  The information presented in these two tables indicates 

that, not surprisingly, the degree of within-household association with regard to long-

distance travel is much lower than that with regard to intra-regional travel.  In some 

cases, the correlations are not significant at the 0.05 level.   
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The little to none positive correlation implies larger within-household variance 

over time, and hence a smaller chance to detect a significant change in long-distance 

travel behavior within a household, given a set sample size.  This effect will become clear 

in the next chapter, when cross-sectional and longitudinal impacts of demographic 

characteristics on monthly number of long-distance tours are estimated and compared. 

8.3. Summary 

This chapter explored the data properties required by the GEE procedures, in 

preparation for the regression analysis in the next chapter as a basis for sample size 

estimation.   

Section 8.1 examined the distributional properties of intra-regional and long-

distance travel variables and found that Tweedie distributions provide a good 

approximation for the distributions of VMT per time unit, i.e. intra-regional VMT per day 

and long-distance VMT per month.  The canonical link function of Tweedie distributions, 

the log link, and the corresponding variance functions will therefore be assumed in the 

next chapter to model intra-regional VMT per day.  Section 8.1 also found that, with 

proper consideration of over-dispersion, the Poisson distribution provides a basis for 

daily number of intra-regional trips and monthly number of long-distance tours.  The 

Poisson distribution may approximate the count of long-distance tours better than the 

count of intra-regional trips.  The next chapter will adopt Poisson regression to model the 

monthly number of long-distance tours. 

Section 8.2 explored the within-household association in intra-regional and long-

distance travel.  Intra-regional travel was found to have a higher degree of association 
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than long-distance travel.  In both cases, the degree of association appears to decrease 

slowly as the time lag between two observations increases. 
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CHAPTER 9  

SAMPLE SIZE ANALYSIS FOR GENERALIZED LINEAR MODELS 

OF KEY TRAVEL BEHAVIOR VARIABLES 

 

This chapter relates sample size analysis to the requirements of regression 

analysis.  The Transportation Research Board Travel Survey Methods Committee 2009 

Research Needs Statements (Travel Survey Methods Committee) emphasized the need to 

relate sample size calculations to regression analysis rather than the maximum allowable 

error of certain statistical inferences, most often the mean, on travel behavior variables, 

such as number of trips per day and total VMT per day.  The Travel Survey Methods 

Committee noted that the sample size requirements for statistical methods used in the 

development of regression models in travel demand forecasting to detect whether an 

explanatory variable has a significant impact on travel behavior may be very different 

from the sample sizes calculated to meet the maximum allowable error requirements on 

the mean value of a travel behavior variable.  Therefore, research into the sample size 

requirements for common transportation-related regression analysis that are employed 

based on survey data is warranted.   

In particular, this chapter relates sample size estimation to regression analysis for 

longitudinal data, accounting for the within-household variability and correlation 

revealed through GPS-based panel surveys.  GPS-based panel survey data impose a 

significant challenge to the aforementioned need for sample size analysis, because a 

different modeling approach is needed for longitudinal data analysis, as outlined in 
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Chapter 7.  Therefore the objectives of this chapter are twofold:  1) to develop regression 

models adopting the generalized estimating equation (GEE) procedures appropriate for 

longitudinal data, and  2) to relate sample size requirements to the regression analysis 

conducted in the first step.   

The goal of the regression analyses in this chapter is not to build advanced 

models, but to use simple but reasonable models as the bases for sample size analyses.  

The small number of households in the Commute Atlanta datasets poses significant 

limitation on how much cross-sectional information can be identified in regression 

models, but the extended survey length makes it possible to identify longitudinal effects.  

Consequently, this chapter underscores the need to use models that suit the longitudinal 

nature and the data distributions of intra-regional VMT and number of long-distance 

tours.  By doing so, the chapter highlights the differences between cross-sectional and 

longitudinal studies and their respective strengths, and their different sample size 

requirements. 

Section 7.2 provided detailed discussions on cross-sectional and longitudinal 

effects with a hypothesized example.  The modeling exercises in this chapter will 

illustrate the concepts outlined in Section 7.2 with empirical evidence from the Commute 

Atlanta data.  Section 9.1 focuses on daily intra-regional VMT, whereas Section 9.2 will 

focus on long-distance tours.   

9.1. Intra-Regional Travel 

9.1.1. Model Estimation 

The goals of model estimation in this section are:  1) to illustrate the differences 

between cross-sectional and longitudinal effects, and  2) to form a basis for the 
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subsequent sample size analysis.  Hence, the model set-up is simplified, choosing fewer 

variables than those included in a practical travel demand model, for a concise 

discussion. 

Daily intra-regional VMT are regressed against two variables: household size and 

number of vehicles per adult.  A variable indicating household income - income per adult 

- was included in initial analysis, but is not included in the model in this section because 

the coefficient for the income per adult variable is not significant, most likely for two 

reasons.  First, the impacts of household income on daily intra-regional VMT is likely to 

differ by segments of income levels, and therefore would be inappropriate to be modeled 

with a linear relationship.  Second, income per adult and number of vehicles per adult are 

positively correlated with a Spearman’s ρ  value of 0.34, and this positive correlation is 

statistically significant at the 0.05 level.  Kutner et al. (2005) noted that correlations 

among explanatory variables could inflate the variability of estimated regression 

coefficients and therefore render the coefficients not statistically significant.  In future 

model developments, specifications of the income variable reflecting market segments, 

rather than a linear approach, will be adopted. 

As pointed out in Chapter 4, total number of vehicles owned is positively 

correlated with household size, as evidenced by a Spearman’s ρ value of 0.69.  Therefore, 

the total number of vehicles is standardized by number of adults1 in the household to 

                                                 
1 Another approach to account for the correlation between household size and total number of vehicles 
owned is to use number of vehicles per driver as an explanatory variable.  The number of adults and the 
number of drivers are generally comparable in a household, but there are 11 households in the Commute 
Atlanta data where the two numbers are not equal.  Six of these households had more drivers than adults 
because some children turned 15 and could obtain learner’s permits.  The remaining five households had 
more adults than drivers because some household members were too old to drive.  The differences in model 
goodness-of-fit between using number of vehicles per adult and number of vehicles per driver will be 
addressed in future research. 
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account for the positive correlations between total number of vehicles and household 

size.   

To demonstrate the distinctions between cross-sectional and longitudinal effects, 

this section first constructs a model that assumes that the cross-sectional and longitudinal 

effects of household demographic characteristics on daily intra-regional VMT are about 

the same, i.e. L Cβ β= .  Subsequently, a second model will be constructed to relax the 

assumption that L Cβ β= , adopting the form given in Equation (7.6).   

9.1.1.1. Assuming C Lβ β=  

Based on the discussions in Chapter 8, the chosen model type is the Tweedie 

distribution with log link.  Hence, the model assumes the form 

0 1 1 2 2log ( )ij ij ijE Y x xβ β β= + +  

where 1ijx  and 2ijx  are household size and number of vehicles per adult, 

respectively. 

The GENLIN command in SPSS gives estimation results as listed in Table 9.1.  

As expected, household size and number of vehicles per adult have significant positive 

association with daily intra-regional VMT.   
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Table 9.1 Parameter Estimates for Modeling Daily Intra-Regional VMT Assuming 
Longitudinal Effects and Cross-Sectional Effects are Equal (Model 1) 

95% Wald Confidence Interval Hypothesis Test
Parameter β  Standard 

Error 
Lower Upper p-value 

Intercept 2.512 .209 2.103 2.922 .000 
Household Size .238 .054 .133 .344 .000 
Number of Vehicles 
per Adult .453 .100 .256 .650 .000 

 
 

9.1.1.2. Differentiating Cβ  and Lβ  

As described in Chapter 5, households underwent significant demographic 

changes during the course of the Commute Atlanta study.  With regard to the two primary 

variables - household size, and number of vehicles per adult, the number of households 

that underwent changes are summarized in Table 9.2.  About 30% of all households 

underwent changes with regard to number of vehicles per adult.  The number of 

households that experienced changes in household size is smaller than those that 

experienced the other two types of changes, but nevertheless amounts to 14% and 

warrants analysis on longitudinal effects. 

 
 

Table 9.2 Number of Households that Underwent Changes 
 Household Size Number of Vehicles per Adult 
No Change 82 64 
Increase 7 14 
Decrease 6 17 

 
 
 

To differentiate Lβ  and Cβ , the values of all three variables for each household at 

the beginning of the study are taken to evaluate the cross-sectional effects, and, based on 

Equation (7.6), the changes for the pth variable are calculated as:  
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1change ij ix x x= − , 

where 1ix  is the initial value of the pth variable, and xij is the value of the pth 

variable at the jth observation; p=1 or 2.  

The previous model is now re-estimated with both Lβ ’s and Cβ ’s.  Table 9.3 

shows the results.   

 
 

Table 9.3 Parameter Estimates for GEE of Intra-Regional VMT Contrasting Cross-
Sectional and Longitudinal Effects (Model 2) 

95% Wald Confidence Interval Hypothesis 
Test 

Parameter β  Standard Error
Lower Upper p-value 

(Intercept) 2.811 .193 2.431 3.190 .000 
Initial Household Size .246 .044 .160 .332 .000 
Initial Number of Vehicles / 
Adult .159 .137 -.110 .428 .247 

Household Size Change .240 .073 .097 .383 .001 
Number of Vehicles Change 
/ Adult .465 .115 .240 .689 .000 

 
 

Comparing Table 9.3 to Table 9.1, the distinctions between cross-sectional and 

longitudinal effects become evident.  First, the cross-sectional and longitudinal effects 

household size on daily intra-regional VMT are of similar magnitude.  The significance 

of longitudinal effects coincides with the case study findings described in Chapter 5. 

Second, the cross-sectional and longitudinal effects of number of vehicles per 

adult appear to be different.  The regression coefficient of the longitudinal effects is 0.47 

with a p-value of 0.  The regression coefficient of the cross-sectional effects is not 

statistically significant given the Commute Atlanta data.  This is not to say households 

with different numbers of vehicles per adult conduct the same amount of intra-regional 
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travel in the general population.  The non-significance of the cross-sectional effects is 

likely attributable to the small number of households (95) in the data.  Also, if the number 

of vehicles per driver were used as an explanatory variable instead of the number of 

vehicles per adult, the results might be different.  As mentioned earlier, such 

specifications about vehicle ownership for the regression model, together with the 

inclusion of income, will be analyzed in future research and reported separately.  In 

comparison, in Model 1 where cross-sectional and longitudinal effects are assumed to be 

the same, the regression coefficient is 0.45, slightly under-stating the longitudinal effect 

and possibly over-stating the cross-sectional effects in the Commute Atlanta data. 

It is common knowledge that the presence of children influences a household’s 

travel behavior.  However, there are only 4 households in the Commute Atlanta sample 

that experienced changes in the number of children.  A much larger sample or a targeted 

sample1 will be needed for the analysis on the impact of change in number of children on 

household travel. 

The corrected quasi likelihood under independence model criterion (QICC) can be 

used as the measure of goodness of fit to compare the two models.  The QICC criterion 

can be used to choose between two sets of model terms, given a correlation structure and 

is in a small-is-better form (SPSS Inc., 2007), meaning that the model with the smaller 

value of QICC performs better, but there is no formal statistical test available to 

determine if the difference between two models is statistically significant.  The QICC is 

2,752,550 for Model 1, and 2,750,450 for Model 2 indicating that Model 2 does not 

perform worse than Model 1.  More importantly, Model 2 is able to distinguish 

                                                 
1 For example, a study may wish to recruit newly wedded couples that plan to have children soon to 
examine the effects of adding a child on travel behavior. 
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longitudinal and cross-sectional effects.  Hence, Model 2 is chosen for the analysis in the 

next section. 

9.1.2. Sample Size Analysis 

The small number of households in the Commute Atlanta data poses a limitation 

on the extent of the sample size analysis for model estimation.  The significance of 

coefficients for explanatory variables is confined to only the prevalent effects observed in 

the 95 households.  Therefore, it is not the intention of such analysis to extrapolate the 

sample size desired to obtain significance of coefficients for explanatory variables that 

are not evident in the existing dataset.  Rather, the analysis in the section intends to 

provide a picture of how the coefficients of explanatory variables would change if the 

number of households is even smaller, or the survey length is shorter with a small number 

of households, and to set a method that can be used with larger samples in the future.  By 

doing so, this section will demonstrate the trade-offs between detecting cross-sectional 

effects and longitudinal effects. 

Various combinations of number of households and number of months are used to 

test the performance of Model 2.  Households are randomly drawn from the original 95 

households.  This analysis uses 100%, 75%, and 50% of all households each time.  Once 

a set of households are drawn, the data for each household is carved out for a number of 

months counted from the beginning of the intra-regional VMT study (October 2004).  As 

noted in the data descriptions in Chapter 3, due to equipment issues, the data for each 

household tend to be incomplete during random months.  About 10% of all data were 

missing due to equipment issues.  The impact of these missing data on this analysis is that 

some households won’t be included in the analysis if they are missing data in the months 
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selected.  Exactly how many households are missing the first few months of data for each 

trial is completely random. 

First, all 95 households are included.  For the first three (3) months of the study, 

data are missing for nine (9) households, and hence the 86 households in the 6th row of 

the table.  Next, about 75% of the 95 households were randomly selected, resulting in 79 

households.  Similarly, data are missing for seven (7) of these 79 households for the first 

three (3) months, and hence the 72 households in the 12th row.  Finally, about 50% of the 

95 households are randomly chosen, resulting in 43 households.  Data are missing for 

four (4) of these 43 households for the first three (3) months.  The parameter estimates 

and corresponding p-values are listed in Table 9.4. 
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Table 9.4 Model Performance with Subsets of Sample: Intra-Regional VMT (Model 2) 
Cross-Sectional Effects Longitudinal Effects 

Initial Household 
Size 

Initial Number of 
Vehicles per Adult

Change in 
Household Size 

Change in Number 
of Vehicles per 

Adult 

Number of 
Households 

Number of 
Months 
Elapsed 

from 
October 

2004 Estimate p-value Estimate p-value Estimate p-value Estimate p-value 
95 18 .201 .001 .222 .139 .188 .012 .491 .000 
95 15 .191 .000 .309 .023 .177 .009 .501 .000 
95 12 .178 .000 .348 .005 .160 .024 .386 .000 
95 9 .180 .000 .348 .003 .101 .036 .358 .023 
95 6 .169 .000 .350 .005 .149 .011 .484 .021 
86 3 .183 .000 .260 .068 .116 .431 .619 .057 
79 18 .195 .000 .454 .006 .167 .074 .540 .001 
79 15 .186 .000 .521 .000 .140 .085 .505 .000 
79 12 .197 .000 .498 .000 .123 .143 .411 .005 
79 9 .197 .000 .484 .000 .067 .157 .361 .039 
79 6 .189 .000 .485 .000 .112 .054 .502 .045 
72 3 .189 .000 .364 .037 .230 .254 .693 .059 
43 18 .193 .000 .391 .060 .203 .195 .392 .006 
43 15 .178 .000 .355 .049 .237 .089 .528 .007 
43 12 .180 .000 .324 .038 .275 .058 .635 .029 
43 9 .197 .000 .352 .039 .196 .300 .537 .104 
43 6 .196 .000 .305 .093 .192 .405 .789 .056 
39 3 .190 .000 .233 .325 .279 .410 .876 .080 
 
 
 

The first two coefficients indicate the cross-sectional effects.  The initial 

household size appears stable and stays significant across all subsets.  The coefficient of 

initial number of vehicles per adult shows significant sampling variability.  When the 

sample size is only less than 50% of the original sample, the p-values for this coefficient 

are all larger than the p-values when the sample size is larger.  This implies that, not 

surprisingly, a larger sample helps identify cross-sectional effects.  However, as the 

survey length increases, the p-values do not always decrease.  It implies that, when there 

is a significant amount of longitudinal variation, which is the case for the working 

sample, it could be more difficult to differentiate cross-sectional effects as the length of 

study increases.   
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The last two coefficients present longitudinal effects.  Generally, the p-values of 

all longitudinal effects increase as the number of households decreases and as the number 

of months decreases, as expected.  This trend is particularly conspicuous with regard to 

the coefficient of the number of vehicles per adult, with a few exceptions1 when the 

sample size is only 50% of the original sample.   

Based on these observations, one could argue that even with a relatively small 

sample (about 100 households), it is still feasible to observe the impact of some 

demographic changes (e.g. vehicle ownership) if the study is long enough (preferably 

more than a year).  It is desirable to recruit a larger longitudinal sample, though, because 

the impact of other demographic changes such as income per adult is less straightforward, 

and a small sample may provide misleading results, even if the coefficient is statistically 

significant.  For example, 4β  is significant when the survey length is 15 months counting 

from October 2004 with the original 95 households, but becomes non-significant when 

the survey length is 18 months.  This phenomenon implies large amount of longitudinal 

variability in the data and that the significance of 4β  with 15 months of data may not be 

reliable. 

If the main objective of a study is to study cross-sectional effects, it may be more 

beneficial to shorten the study and to expand the number of households, unless both sets 

of effects are needed for travel demand forecasting.  As reviewed in Chapter 2, one of the 

objectives of the new generation of activity-based models is to forecast long-term travel 

trends with regard to population aging and other demographic shifts.  To achieve this 

goal, activity-based models need input data that reflect both cross-sectional and 

                                                 
1 The exceptions are likely because the small sample size (about 43 households) renders the model 
coefficients unstable to extreme values. 
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longitudinal information.  Given limited resources, a combination of a large sample of 

short surveys and a small sample of long-range panel surveys are probably optimal for 

planning purposes. 

9.2. Modeling Long-Distance Travel 

9.2.1. Model Estimation 

This section first builds a model for monthly number of long-distance tours, since 

this is usually the focus of long-distance trip generation modeling.  While building the 

model will provide insights into long-distance travel behavior, the major purpose of this 

section is to provide a basis for the next section: sample size analysis.  Therefore, as with 

the intra-regional travel, the model estimation process will purposefully select only a 

small number of variables.  The behavioral interpretations of the model coefficients will 

also be discussed.   

9.2.1.1. Selecting variables 

Based on the exploratory data analysis about demographic characteristics 

presented in Chapter 4, households are categorized into 3 groups: category 1 - multi-

person with high income (≥  $75,000 annual income), category 2 - multi-person with low 

income (<$75,000 annual income), and category 3 - single-person households, as 

summarized in Table 9.5.  These categories are included in the model.  Based on the 

examination of seasonal effects in Chapter 5, the variable indicating the months is also 

included in the model. 
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Table 9.5 Summary of Household Categories 
Category Description Number of Households Percent 

1 Multi-person with high income  
(≥  $75,000 annual income) 32 34% 

2 Multi-person with low income 
(<$75,000 annual income) 37 40% 

3 Single-person 25 26% 

Total 941 100% 

 
 
 

Table 9.6 presents the parameter estimates for the above mentioned variables.  

The interpretations of the coefficients will be discussed in detail in the next section.  At 

this stage, the point of interest is that the value of the coefficient for the dummy variable 

“category 2” is not significantly different from 0 compared to reference variable 

“category 1”, indicating that the monthly number of long-distance tours conducted by 

multi-person households with high income is not significantly different from that 

conducted by those with low income.  This result is contradictory to research 

expectations. 

 
 

                                                 
1 One household is excluded for the analysis on long-distance travel.  This household has a college student 
who is attending an out-of-town college with a home located at the college, but this student comes back to 
stay in Atlanta for extended periods.  Consequently, all the trips this student makes in Atlanta while staying 
with the parents are identified as segments of long-distance tours, based on the criteria outlined in Section 
3.2.3.   
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Table 9.6 Parameter Estimates for Modeling Monthly Number of Long-Distance Tours 
Assuming Longitudinal Effects and Cross-Sectional Effects are Equal (Model 1) 

Hypothesis 
Test 

Parameter β  Std. Error 
p-value 

Intercept -1.193 .2169 .000 
December .518 .1683 .002 
November .559 .1584 .000 
October .483 .1947 .013 
September .270 .2075 .193 
August .304 .1740 .081 
July .711 .2021 .000 
June .535 .1739 .002 
May .579 .1940 .003 
April .662 .1621 .000 
March .341 .1624 .036 
February .247 .1760 .161 

Month 

January Set to 0 NA NA 
Single-Person -1.313 .3528 .000 
Multi-Person 
Low Income -.104 .2204 .637 Household Category 
Multi-person 
High Income Set to 0 NA NA 

 
 

This contradiction leads to a second look at the model assumptions.  As 

mentioned before, the marginal model approach assumes that C Lβ β= .  However, this 

assumption may not hold with the empirical experience.  To examine the validity of this 

assumption, cross-sectional effects and longitudinal effects are distinguished by taking 

the model form (7.6).  The next step is to incorporate the longitudinal effects into the 

model.  There are only 4 households that experienced changes in their single- or multi-

person household status.  Therefore, the longitudinal effect of being a single- or multi-

person household is not examined due to the small number of households that 

experienced such changes.  The change of income category is calculated as 
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Income category change = 1ij ix x−       (9.1) 

where  

1 annual income $75K
(income category)

2 annual income $75K
x

<⎧
= ⎨ ≥⎩

 

i indicates the household ID, and 

1, 2, ,30j = …  indicates the number of the month relative to the beginning of the 

study. 

 

Thus, the variable “income category change” takes three values: 1 - indicating 

that a household changed from low income category to high income category, 0 - 

indicating that a household stayed in the same income category throughout the study, and 

-1 - indicating that a household changed from high income category to low income 

category.  Six (6) households changed from high income to low income category, and 

four (4) changed from low income category to high income category.  Table 9.7 

summarizes the information described in this paragraph. 

 
 

Table 9.7 Summary of the Longitudinal Variable “Income Category Change” 
Value Description Number of Households Percent 

1 a household changed from low income 
category to high income category 4 4% 

0 a household stayed in the same income 
category throughout the study 84 90% 

-1 a household changed from high income 
category to low income category 6 6% 

Total 94 100% 

 
 
 

The coefficients in this new model that incorporates this income change variable 

are summarized in Table 9.8.  The results show that the coefficient for the income change 
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is not significant with a p-value of 0.77.  On the contrary, the coefficient for the variable 

indicating whether a household belongs to category 2 at the beginning of the study is 

significant at the 0.10 level, though not at the 0.05 level.  Controlling for changes in 

income categories, the cross-sectional effects of income among multi-person household 

become significant in Model 2, even though the longitudinal effect is not significant in 

the sample.  There may be a significant lag between the change in income levels and a 

change in long-distance travel behavior, and the incorporation of the lag variable will be 

investigated in future models. 

 

Table 9.8 Parameter Estimates for GEE of Monthly Number of Long-Distance Tours 
Contrasting Cross-Sectional and Longitudinal Effects (Model 2) 

Hypothesis Test 
Parameter β  Std. Error

p-value 
Intercept -1.057 .2092 .000 

December .516 .002 .002 
November .559 .000 .000 
October .482 .013 .013 
September .268 .195 .195 
August .301 .083 .083 
July .708 .000 .000 
June .524 .003 .003 
May .566 .004 .004 
April .649 .000 .000 
March .336 .038 .038 
February .246 .162 .162 

Month 

January Set to 0 NA NA 
Single-Person -1.351 .3504 .000 
Multi-Person 
Low Income -.424 .2521 .092 Initial Household Category
Multi-Person 
High Income Set to 0 NA NA 

Change in Income Category .065 .2193 .767 
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After confirming the non-significance of longitudinal effects through Model 2, the 

monthly numbers of long-distance tours are regressed against the category status of each 

household at the beginning of the study to simplify the model.  The parameter estimates 

are presented in Table 9.9.  This model that is only concerned with cross-sectional effects 

is referred to as Model 3. 

 

Table 9.9 Parameter Estimates for Examining Cross-Sectional Effects (Model 3) 
95% Wald Confidence 

Interval 
Hypothesis 

Test 
Parameter β  Std. Error

Lower Upper p-value 

Intercept -1.053 .2071 -1.459 -.647 .000 
December .517 .1685 .186 .847 .002 
November .558 .1581 .249 .868 .000 
October .482 .1945 .101 .863 .013 
September .268 .2068 -.137 .673 .195 
August .301 .1738 -.039 .642 .083 
July .709 .2010 .315 1.103 .000 
June .524 .1740 .183 .865 .003 
May .567 .1945 .185 .948 .004 
April .650 .1627 .331 .969 .000 
March .336 .1620 .019 .654 .038 
February .246 .1758 -.099 .590 .162 

Month 

January Set to 0 NA NA NA NA 
Single-person -1.357 .3495 -2.042 -.672 .000 
Multi-person 
Low Income -.434 .2435 -.911 .043 .075 Initial Household 

Category 
Multi-person 
High Income Set to 0 NA NA NA NA 

 
 

Comparing Table 9.9 to Table 9.6, the values for all coefficients are relatively 

robust, except for the value of the dummy variable for “category 2”.  Using the initial 

status of each household, the new model shows a more significant difference in the 

monthly numbers of long-distance tours between multi-person households with low 
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income and those with high income, even though not significant enough at the 95% 

confidence level (p-value=0.075 > 0.05, but < p-value of 0.637 in Model 1).  This 

difference represents the cross-sectional effect of income within multi-person households.  

This model has a QICC value of 3826, slightly smaller than the QICC value of 3831 for 

Model 2, indicating that dropping the longitudinal information does not impact model 

performance negatively. 

The results from Model 2 and Model 3 provide insight into the non-significance 

of income level in Model 1.  Model 1 assumes that C Lβ β=  for household income among 

multi-person households, but Model 2 and Model 3 indicate that this assumption may be 

incorrect.  Model 2 has shown that, with 90% confidence, income level has significant 

cross-sectional impact on the monthly number of long-distance tours per household. 

However, the data do not have enough evidence to reject the hypothesis that the 

longitudinal impact of income levels is not significant.  To put it in mathematical terms, 

Model 2 showed that, with regard to income levels among multi-person households in the 

Commute Atlanta long-distance dataset, 0Cβ ≠ , but 0Lβ = ; therefore, C Lβ β≠ .   

9.2.1.2. Discussion of model coefficients 

Section 9.2.1.1 shows that Model 3 performs the best.  This section discusses the 

interpretations of the model coefficients.   

Model 3 takes the form: 

0 1 2 3 4 5 6 7

8 9 10 11 2 12 3 13

log ( ) (

) ( )
ij Feb j Mar j Apr j May j Jun j Jul j Aug j

Sep j Oct j Nov j Dec j Cat i Cat i

E Y x x x x x x x

x x x x x x

β β β β β β β β

β β β β β β

= + + + + + + +

+ + + + + +
       (9.2) 

where   
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, ,Feb Decβ β…  are the coefficients indicating the impact of a particular month on 

the numbers of long-distance tours, with respect to January (set as reference 

purposefully, based on the data patterns seen in Chapter 4), 

accordingly, 1 11, ,j jx x… 1 are dummy variables indicating whether an observation 

occurred on a specific month, 

2Catβ  and 3Catβ  are the coefficients indicating the cross-sectional impact of a 

demographic group2 on the numbers of long-distance tours, with respect to 

Category 1 (set as reference), and 

12ix  and 13ix 3 are dummy variables indicating whether a household belongs to a 

specific category at the beginning of the study. 

 

Because the Poisson model is estimated with the link function ( ) log( )i ih μ μ= , the 

interpretation of the regression coefficients requires examining the linear estimates and 

the exponential estimates simultaneously to obtain sensible understanding of the model.  

Revisiting Table 9.9, Table 9.10 includes the exponential estimates of the regression 

coefficients for practical interpretations. 

The intercept gives the expected number of long-distance tours for the reference 

group - the multi-person households with high income in January.  The model estimates 

that the mean number of long-distance tours conducted by multi-person households with 

high income in January is 0.35. 

The coefficients for the month dummy variables all show positive signs, 

confirming that January is the least active month for long-distance travel.  The p-values 

                                                 
1 The footnote i is dropped because each household has the same set of variables for the month of the year. 
2 The demographic groups are listed in Table 9.5. 
3 The footnote j is dropped because each household has the same initial category assignment throughout the 
study. 



183 

show that the number of long-distance tours in January is significantly different from 

most other months except February, August and September.  The similar values of β ’s 

for the months from April to July, and from November to December imply that the 

number of long-distance tours are not different among these months. 

The coefficients for the household group dummy variables both show negative 

signs, indicating that multi-person households with high income are the most likely to 

take long-distance tours among all three household groups.  The coefficient for multi-

person households with low income has a p-value of 0.075, which is not significant at the 

0.05 level, but is significant at the 0.10 level.  The exponential estimates in Table 9.10 

imply that, in January month, a multi-person household with low income takes 0.648 

times as many long-distance tours as a household in the reference group, whereas a 

single-person household takes about 0.257 times as many long-distance tours as a 

household in the reference group. 
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Table 9.10 Regression Coefficients and their Exponential Estimates for Model 3 
Parameter β  p-value exp( )β  
Intercept -1.053 .000 .349 

December 0.517 0.002 1.676 
November 0.558 0 1.748 
October 0.482 0.013 1.619 
September 0.268 0.195 1.307 
August 0.301 0.083 1.352 
July 0.709 0 2.032 
June 0.524 0.003 1.689 
May 0.567 0.004 1.762 
April 0.65 0 1.916 
March 0.336 0.038 1.4 
February 0.246 0.162 1.279 

Month 

January Set to 0 NA 1 
Single-person -1.357 .000 .257 
Multi-person Low Income -.434 .075 .648 

Household 
Category 

Multi-person High Income Set to 0 NA 1 

 

9.2.2. Sample Size Analysis 

9.2.2.1. Length of Study 

Section 9.2.1 has shown that demographic characteristics have different cross-

sectional and longitudinal effects on the monthly numbers of long-distance tours a 

household takes.  While the cross-sectional effects are significant with regard to 

household income and the numbers of household members, the longitudinal effects of 

income are inconspicuous, probably due to the small sample size.  Or, there may be a lag 

effect between changes in income levels and changes in the monthly number of long-

distance tours.  Various other factors could also explain this phenomenon, as discussed 

below.   

First, the long-distance travel behavior may be similar to short-distance travel 

behavior in that they both can be categorized as mandatory and discretionary.  In the case 
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of long-distance travel, mandatory demand does not necessarily mean work-related 

demand.  An annual visit to the out-of-town parents could very well be “mandatory”, and 

such demand is unlikely to change as household demographic characteristics change. 

Second, household income is specified as a categorical variable for the long-

distance regression analysis.  This means that a household whose income changed from 

$74,000 per year to $76,000 a year will be treated the same as a household whose income 

changed from $30,000 to $ 90,000.  To measure income change in this fashion could 

have undermined the model’s ability to correctly estimate the longitudinal effects of 

income changes on long-distance travel.  The specification of the model will be refined in 

future research. 

A final observation is that this dataset only records auto tours.  The change of 

long-distance travel by other modes of travel, e.g. air, is not captured.  Households could 

very well increase long-distance travel as income and/or the number of household 

members increase, but they may choose air travel over auto, rendering constant or even 

reduced numbers of long-distance tours collected in the dataset, and therefore making the 

longitudinal effects not statistically significant.  Future research could assess air travel by 

identifying trips to the Atlanta Hartsfield-Jackson airport. 

The changes concerning children are likely to have a significant impact on long-

distance travel behavior, too.  For example, when a household has a new-born baby, it is 

likely to reduce long-distance travel for a couple of years.  When a child reaches school 

age, the household’s long-distance travel decisions are likely to be constrained by the 

school schedule.  However, the dataset does not include enough households that 

experienced such changes for these analyses. 
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These observations suggest that a much longer study period and much larger 

samples are likely required to obtain longitudinal information with regard to household 

long-distance travel behavior, because long-distance travel is a rare event compared to 

intra-regional travel, and may change only gradually over time in response to 

demographic and/or other changes.  The need for a large longitudinal sample for long-

distance travel is especially compelling in the context of policy concerns such as fuel 

consumption and high speed rail construction. 

9.2.2.2. Sample Size Planning 

To test the impacts sample size and survey lengths on model performance, various 

subsets of the data are used to estimate Model 3 as described in Section 9.2.1.  The 

method to select subsets of the sample is the same as described in Section 9.1.2. 

2Catβ , whose p-values are plotted against number of months counting from 

October 2004 in Figure 9.1, is given special attention because of the behavioral 

implication it represents - the association between income levels and the frequency of 

long-distance travel, and because of the borderline p-value - larger than 0.05 but smaller 

than 0.10.   
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Figure 9.1 The Trend of p-Values for 2Catβ  as the Number of Months Increases, Counting 

from October 2004  
 
 
 

With the same number of households, all p-values increase as the number of 

months from the fixed starting month (January 2004) decreases, as expected.  The model 

effects with different numbers of households, however, show less straightforward results.  

For example, in trials with 30 months of data, the p-value for 2Catβ  decreases as the 

number of households decreases from all 94 households to 75% of all households, but the 

p-values for the two subsets of 50% of all households are very different.  This 

phenomenon suggests that there is a lot of variability across demographic groups, in that 

some households behave more in an “expected” way in terms of long-distance travel, 

while other households tend to defy the trend.  This observation implies that the current 

sample does not contain enough households for the targeted regression effect. 
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9.3. Summary 

This chapter has underscored a few important points regarding longitudinal 

studies, as summarized below. 

It is important to adopt a suitable model form for longitudinal data.  The 

regression analyses conducted for both daily intra-regional VMT and monthly number of 

long-distance tours suggest that the longitudinal effects and cross-sectional effects may 

be different for certain variables.  To assume that longitudinal effects and cross-sectional 

effects are the same could lead to biased conclusions in modeling practices (Diggle, et 

al., 2002). 

Long-distance travel and intra-regional travel may be driven by very different 

factors, and therefore may present different patterns in response to changes in household 

demographics.  A much larger sample size and a longer survey period are needed for 

modeling long-distance travel than for intra-regional travel. 

The strength of a longitudinal study lies in the study of change (Fitzmaurice, et 

al., 2004).  For intra-regional travel, this chapter has demonstrated that a small sample 

size (about 100 households) with a long study period (preferably more than a year) could 

present significant longitudinal effects for some variables such as household size and 

number of vehicles per adult.  It would require a large number of households and a long 

survey (preferably more than a year) to detect both the cross-sectional and longitudinal 

effects.  This would require many resources that may not be available at most MPOs.  If, 

however, the main purpose of a study is to examine how households would change their 

intra-regional travel behavior as their demographic characteristics change, a small 

number of households combined with an extended survey period may be sufficient. 
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Therefore, a combination of a large-sample one-day or two-day travel survey and 

a small-sample longitudinal monitoring program appears ideal to examine both the cross-

sectional variability in a region and the trends over time.  Further, the longitudinal 

surveys can be a combination of continuous monitoring over several months, and a multi-

wave panel over a year consisting of two-day surveys in each wave. 
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CHAPTER 10  

SAMPLE SIZE ANALYSIS FOR BEFORE-AND-AFTER STUDIES 

 

As outlined in Chapter 7, sample size calculation algorithms for longitudinal 

studies are applied frequently in biomedical research, but not in travel behavior studies.  

The task of this chapter is to adapt existing algorithms to travel behavior studies.  The 

challenges are two-fold:  1) to translate the existing statistical methods into practical 

procedures that can be applied to transportation policy evaluation, and  2) to estimate the 

inputs needed in these procedures based on experiences from the Commute Atlanta study 

and applications of reasonable assumptions. 

This chapter uses the Commute Atlanta study as an example for sample size 

analysis.  The first section of this chapter specifies the inputs required for the sample size 

analysis as outlined in Chapter 7.  The second section of this chapter examines the 

sensitivity of estimated sample size requirements to the eliminations of extreme values in 

the data.  The third section presents the relationship between the minimum sample size 

and the degree of within-household correlation in the data.  The fourth section of this 

chapter analyzes sample size requirement as the length of the survey varies.  The fifth 

section examines the relationship between the required sample size and the magnitude of 

the demand elasticity expected due to a policy change.  The sixth section extends the 

discussions to the missing data issue.  A summary of findings is given at the end this 

chapter. 
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10.1. Input Parameters for Sample Size Analysis 

In the Commute Atlanta study, household VMT were summarized once every 

month from October 2004 to June 2005 as the baseline period and from Oct 2005 to June 

2006 as the pricing period.  Therefore, there are T=18 time points and the vector 

[ ]1 2 3 4 5 6 7 8 9 13 14 15 16 17 18 19 20 21=τ . 

10.1.1. Design Matrix 

Three sets of variables are included in the design matrix: a (1 12× ) vector of 

dummy variables indicating month of year to control for seasonal effects, a scalar 

variable z to measure gasoline price changes with regard to the beginning of the study, 

and a dummy variable indicating the application of pricing incentives.  The variable z is 

calculated as  

 z = log (gasoline pricej/gasoline price0)      (10.1) 

where gasoline price0 is the gasoline price at the beginning of the study.  Equation 

(10.1) takes the log form commonly adopted in studies on gasoline price elasticity (Puller 

and Greening, 1999; Parry and Small, 2005).  To put in practical terms, the log form 

implies a non-linear relationship household VMT decrease and gasoline price increase.  

The calculations use the lower Atlantic gasoline price data provided by the Energy 

Information Administration (2010). 

Arguably, it is likely impossible to predict gasoline price changes at the design 

stage.  However, this analysis includes gasoline price changes as a variable to emphasize 

the importance of considering such external variables when designing before-and-after 

studies.  When changes in gasoline price and other exogenous variables cannot be 
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controlled for in practice, researchers need to increase sample size to account for the 

background variability.  Such matrix is provided in Table 10.1. 

 

Table 10.1 Design Matrix 
X 

T 
Jan Feb Mar Apr May Jun Oct Nov Dec Log(z) Pricing Incentives 

Applied 

1 0 0 0 0 0 0 1 0 0 0.00 0 
2 0 0 0 0 0 0 0 1 0 0.00 0 
3 0 0 0 0 0 0 0 0 1 -0.06 0 
4 1 0 0 0 0 0 0 0 0 -0.07 0 
5 0 1 0 0 0 0 0 0 0 -0.04 0 
6 0 0 1 0 0 0 0 0 0 0.05 0 
7 0 0 0 1 0 0 0 0 0 0.13 0 
8 0 0 0 0 1 0 0 0 0 0.09 0 
9 0 0 0 0 0 1 0 0 0 0.08 0 

10 0 0 0 0 0 0 1 0 0 0.36 1 
11 0 0 0 0 0 0 0 1 0 0.15 1 
12 0 0 0 0 0 0 0 0 1 0.10 1 
13 1 0 0 0 0 0 0 0 0 0.17 1 
14 0 1 0 0 0 0 0 0 0 0.15 1 
15 0 0 1 0 0 0 0 0 0 0.21 1 
16 0 0 0 1 0 0 0 0 0 0.34 1 
17 0 0 0 0 1 0 0 0 0 0.37 1 
18 0 0 0 0 0 1 0 0 0 0.36 1 
 

10.1.2. Stochastic Properties of Outcome Variable 

Chapter 8 presented the suitability of Tweedie distributions to the daily intra-

regional VMT data.  However, the algorithms developed by Rochon (1998) do not 

include the Tweedie distributions as an option of underlying distributions.  An alternative 

is to model weekday VMT with gamma distribution, since there are very few zero values 

of daily VMT in the weekday travel dataset.   
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Gamma distribution fits the monthly weekday intra-regional VMT data well, as 

shown in Figure 10.1 (Kleinman and Horton, 2010).  The goodness-of-fit is further 

confirmed with the Q-Q plot shown in Figure 10.2.  The scale parameter estimate of the 

gamma distribution is 393 and the shape parameter estimate is 2.17, resulting in the 

expected variance of 335,413.  The empirical variance is 335,594, very close to the 

expected variance.  Therefore, the parameter ψ  indicating under- or over-dispersion is 

set to 1. 

 
 

 
Figure 10.1 Histogram of monthly weekday intra-regional VMT with estimated gamma 

density curve 
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Figure 10.2 Gamma Q-Q Plot of monthly weekday intra-regional VMT 

 
 

In comparison to Section 8.1.2, where Tweedie distributions were shown to fit 

daily intra-regional VMT data well, monthly weekday intra-regional VMT data rarely 

have zero values, so the suitability of gamma distribution is not surprising.  The log link 

is adopted as the norm for gamma distributed data. 

10.1.3. Correlation Structure 

As discussed in Chapter 7, the exchangeable correlation structure is a reasonable 

assumption.  The GENLIN command of SPSS gives the correlation estimate of 0.721.  

The sample size requirements will first be analyzed under the assumption of the 

exchangeable correlation structure. 

The discussions will also consider “damped” correlation structures1 (Muñoz, et al., 

1992) with θ = 0.5 and φ = 0.75, and with θ = 0.5 and φ = 0.85.  The assumption of the 

                                                 
1 Please refer to Chapter 7 for the specifications of the damped correlation structures. 
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damped correlation structures reflects the trend observed in Table 8.5, where the decrease 

in correlation when two repeated observations are further apart in time, but the θ  value 

of 0.5 implies that the rate of decrease is slower than that of an autoregressive correlation 

structure.   

10.1.4. Expected Outcomes 

Consider the number of households needed under the design of the pricing 

element in the Commute Atlanta study.  For simplicity, the sample will not be divided 

into subpopulations in this initial stage, hence S=1.  The expected outcome values, as 

summarized in Table 10.2, are estimated through the Commute Atlanta study intra-

regional dataset with adjustments for pricing impacts, assuming that all households 

respond to the pricing policy with similar magnitude of VMT reduction1.  The basic idea 

is to impose pricing effects on the observed values.  As discussed in Chapter 5, the case 

studies of every household in this study have indicated that the mileage-based pricing 

incentives seem to have influenced the travel behavior of some households at various 

levels, but the impact is not significant in the entire sample.  Therefore, this analysis 

needs to impose a pricing impact to estimate the mean monthly weekday intra-regional 

VMT values for the pricing period.  The detailed procedures upon which the calculation 

of the pricing impact is based are described in detail below.  

In Table 10.2, the expected sample mean for the pricing period is obtained 

through multiplying the observed sample mean by the amount of the pricing impact.  The 

                                                 
1 In practice, some households may be more sensitive to pricing incentives than others, but the small 
number of households in the Commute Atlanta study was not able to provide evidence on how much the 
differences may be between different demographic groups.  Therefore, a single impact value is assumed for 
all households.  Future research is warranted to investigate the differential pricing impacts and the 
associated sample size requirements in stratified sampling. 
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amount of the pricing impact, i.e. coefficient for the variable indicating the policy 

measure, is decided based on the amount of the pricing incentives and the price elasticity 

of travel demand, described as the following.   

1. The absolute amount of pricing incentives. 

In the Commute Atlanta study, the largest value of pricing 

incentives was 15 cents per mile, which is very close to the optimal VMT 

tax of 14 cents per mile suggested by Parry and Small (2005).  This 

equates to about 290 cents per gallon of gasoline.   

2. The amount of pricing incentives relative to gasoline prices 

The average gasoline price during the study period from October 

2004 to June 2006 is 234 cents per gallon.  Therefore, applying the 

mileage-based pricing incentive of 15 cents per mile is equivalent to 

setting the gasoline price by 2.24 times as high as the original average 

price1. 

3. Gasoline Price Elasticity 

The price elasticity of travel demand is estimated based on 

gasoline demand elasticity with respect to VMT.  The literature review 

identified the work of Parry and Small (2005), who adopted the value of -

0.22 for the VMT portion of the gasoline demand elasticity in their 

analysis of gasoline taxation.  This value will be employed for the initial 

analysis.  In Section 10.5, a range of assumed gasoline price elasticity will 

be tested for the corresponding sample size requirements. 

                                                 
1 This is to assume that households respond to the pricing incentive in the Commute Atlanta pricing study 
similarly to they would with out-of-pocket gasoline costs. 
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4. Corresponding Percentage Change in VMT 

Based on the gasoline price elasticity value of -0.22, a 15-cent-per-

mile VMT charge would calculate to a coefficient value of -0.18 for the 

policy measure indicator1.  As mentioned in Section 10.1.2, the data 

distribution is assumed to be gamma and modeled with a log link.  Hence, 

the -0.18 coefficient translates to an exponential coefficient value of 0.832, 

meaning that weekday intra-regional VMT is expected to be 83% of the 

baseline amount during the pricing period3.   

 

                                                 
1 -0.18=-0.22*ln(2.24) 
2 0.83=exp(-0.18) 
3 Please refer to Section 9.2.1.2 for a similar discussion on the interpretation of coefficients based on a log 
link. 
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Table 10.2 Baseline Means and Expected Pricing Period Means of Monthly Weekday 
Intra-Regional VMT at Baseline and Pricing Periods 

Observation 
Number Follow-up Times Pricing Observed Sample Mean Expected Sample Mean Had 

Pricing Effects Been Present1 
1 1 0 906  
2 2 0 853  
3 3 0 902  
4 4 0 821  
5 5 0 755  
6 6 0 901  
7 7 0 868  
8 8 0 910  
9 9 0 914  

10 13 1 817 683 
11 14 1 817 682 
12 15 1 866 723 
13 16 1 724 605 
14 17 1 762 636 
15 18 1 943 787 
16 19 1 764 638 
17 20 1 978 817 
18 21 1 841 702 

 

The above procedures demonstrated the calculation of expected sample means 

under the assumption that the gasoline price elasticity with regard to VMT is -0.22.  In 

the remainder of this chapter, sample size requirements will be estimated for two other 

gasoline price elasticity values: -0.11 and -0.30. 

To test the null hypothesis that households do not adjust their weekday intra-

regional VMT to the pricing incentives, the hypothesis matrix would be  

(1 10)[ 1]×=H 0  

with 0=0h .   

                                                 
1 Assuming gasoline price elasticity with regard to VMT is -0.22 as recommended by Parry and Small 
(2005). 
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10.2. Sensitivity to Extreme Values 

The case-by-case studies (Xu, et al., 2009a) of the 95 households in the Commute 

Atlanta sample indicate significant variability between-household and within-household.  

Extreme values exist for some households in certain months, often associated with 

background changes that a travel survey is not able to control for.  Such changes could be 

a vehicle breaking down that limits the amount of travel in a household during a certain 

period of time, or a student starting a job that requires a significant amount of travel.  

Extreme values could have a significant impact on the estimated minimum sample size, 

so this section tests the sensitivity of sample size requirements to the elimination of 

extreme values. 

In this analysis, an extreme value is determined if an observation for a certain 

household in a certain month has a relative deviation that is above or below a given 

percentile among all household-month observations.  The relative deviation is defined as: 

Relative deviation = Observed Value - Predicted Value
Predicted Value

 

The predicted values are calculated based on the regression coefficients for the variables 

in the design matrix exhibited in Table 10.1, estimated through the GEE algorithms 

developed by Rochon (1998).  Two scenarios are tested:  1) observations with the highest 

1% and lowest 1% relative deviations are trimmed, and  2) observations with the highest 

2.5% and lowest 2.5% relative deviations are trimmed.  The resulting minimum sample 

sizes are shown in Figure 10.3, in comparison with the minimum sample size based on 

the original (untrimmed) data.  Figure 10.3 indicates that to include extreme values in the 

pricing study would require a very large sample size of 2,263 households.  Eliminating 

one percent of the household-month observations on each extreme side would result in a 
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smaller sample size of 1,671 households, but a study with this sample size would still be 

very expensive.  Eliminating 2.5 percent of the observations on each side (5% in total) 

would result in a much smaller sample size of 528 households.  A study with 528 

households would be reasonable in practice, and the subsequent analyses will be based on 

this trimmed sample in which 2.5% of the observations are eliminated on each side. 
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Figure 10.3 Required Sample Size in Relation to Eliminating Extreme Values 

Assumptions: damped correlation structure with θ = 0.5 and φ = 0.85 
 
 

It is important for practitioners to exercise extreme caution in considering extreme 

values in the design stages and in the analytical stages of consumer response research.  

One the one hand, it is important to eliminate true outliers from analyses when such 

households do not represent normal behavioral change, unduly influence the model 

outputs, and can for a specific reason be removed and modeled separately.  On the other 
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hand, when model developers remove observations with extreme values based purely 

upon standard procedures without studying the potential causes for such extreme values, 

they could remove valid data that represent the behavior of a true subset of the population 

from the analytical dataset, and therefore run the risk of deriving biased model 

estimators.  This dissertation confirmed the appropriateness to remove extreme values 

based on the case-by-case studies of household demographic information (Xu, et al., 

2009a) to ensure the eliminated observations are true outliers. 

In the design stage, identifying and planning ahead for potential deviations from 

expected behavioral change within sub-populations is critical.  For example, the 

Commute Atlanta study found that households using a vehicle that they identify a vehicle 

as being used in part “for commercial purposes” exhibited significantly elevated travel 

patterns, which may or may not be influenced by pricing (Elango, et al., 2007).  

Household groups that appear to remain uninfluenced by a pricing stimulus for some 

specific reason should be identified and sampled separately in future studies.  One-time 

changes in household behavior may also unduly influence sample size estimation.  For 

example, the return of a child from college for spring break may significantly influence 

household travel for one month and mileage within this household may increase 

significantly rather than decrease slightly in response to pricing.  By including such 

single-point anomalies in the distribution used to establish sample size requirements, 

significantly inflated sample size estimates could result. 

However, when extreme values do not occur on a random basis, simply 

eliminating extreme values from any analysis without thorough investigation could create 

significant biases in predictions.  That is, the “rare events” that led to the extreme values 



202 

in the Commute Atlanta data may not be very rare and larger sample sizes may therefore 

be needed to accommodate observations that do not conform to the research expectations 

of a study.   

In planning future before-and-after studies designed to assess consumer response 

to policy initiatives, it will be important to collect more detailed post-experiment survey 

data, e.g. via interactive focus groups and personal interviews, especially from those 

households that exhibit large deviations from expected behavior.  Researchers need to 

ensure that there is a reason for removing these households from any analytical dataset 

used in establishing sample size criteria or else risk under-sampling in future endeavors. 

10.3. Sample Size versus Assumptions on Correlation Structures 

The degree of within-household association plays an important role in sample size 

requirements for longitudinal studies; generally, the required sample size increases as the 

within-household association increases, when estimating a change over time (Diggle, et 

al., 2002).  Based on the correlation structure of intra-regional VMT in the Commute 

Atlanta sample, as examined in Chapter 8, a damped correlation structure with θ = 0.5 

and φ = 0.85 would fit the data well.  A more commonly seen structure, the exchangeable 

correlation structure1 with φ = 0.72, would also be a reasonable assumption.  It is also 

acknowledged that the degree of within-household association could very well differ 

across demographic groups.  For example, a two-person household in which both 

members have inflexible work schedules is likely to show more correlation in intra-

regional VMT than a two-person household in which both members are retired.  

Therefore, studies targeting different demographic groups should consider different 

                                                 
1 The exchangeable correlation structure is a special case of the damped correlation structure when θ = 0. 
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correlation structures among observations within a household.  To examine the sensitivity 

of sample size requirement to correlation structures, three scenarios are specified:  1) θ = 

0, φ = 0.72, 2) θ = 0.5, φ = 0.85, and  3) θ = 0.5, φ = 0.75.  The degrees of within-

household association under scenarios 1) and 2) are comparable, and scenario 3) assumes 

a lower degree of within-household association.  The corresponding sample size 

requirements are shown in Figure 10.4. 
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Figure 10.4 Sample Size versus Correlation Structures 

 
 

10.4. Sample Size versus Number of Survey Months 

In this section, the number of repeated observations and the follow-up times are 

varied to test the impact on required sample size.  The pricing period months are a year 

apart from baseline months to control for seasonality.  The number of months elapsed 
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from October in each period is reduced for sample size analysis.  The results are 

presented in Figure 10.5.   
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Figure 10.5 Sample Size Requirements as the Number of Survey Months in Each Period 

Increases with Fixed Starting Month in October 
 
 
 

Figure 10.5 shows a general decreasing trend of minimum sample size as the 

number of months in each period increases, with the starting months fixed at October 

given the Commute Atlanta study set up.  The decreasing trend of minimum trend is 

expected, but it is important to acknowledge that this graph also reflects the seasonal 

effects intrinsic to the study design in which the starting month was October.  The graphs 

shows that the minimum sample size fluctuates as the number of months elapsed from 

October increased from one to five, before the sample size starts to steadily decrease as 
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the number of months elapsed from October increased from six to nine.  The non-

decreasing sample size depicted by the first five columns in Figure 10.5 reflects the high 

year-to-year variability in household travel during the holiday season (November and 

December) and the potential impact of inclement weather in winter months (January and 

February).  During these months, household are likely to change travel decisions driven 

by factors other than pricing incentives, rendering the estimation of sample size for 

detecting policy impacts unstable. 

10.5. Sample Size versus Expected Policy Impact 

In the previous section, the expected pricing impact on household VMT is set 

according to the assumption that price elasticity is -0.11, applied to all demographic 

groups equally.  This is to assume the price elasticity with regard to VMT in the 

Commute Atlanta study is only half the amount Parry and Small (2005) recommended for 

gasoline price elasticity with regard to VMT, based on a comprehensive literature review.  

The rationale for this assumption was that, given the setup of the study, households did 

not incur any out-of-pocket costs with the mileage-based pricing incentives.  When 

households do not experience a direct impact from VMT pricing, the absolute value of 

price elasticity could be smaller than the assumed price elasticity of gasoline demand.  In 

different regions and study settings, in an area where residents have ample alternative 

transportation options, households may be more sensitive to pricing incentives.  

Therefore, a range of price elasticity is adopted for sample size estimation - a larger price 

elasticity of -0.30, the elasticity value of -0.22 recommended by Parry and Small (2005), 

and half the recommended elasticity value, -0.11.  The results are presented in Figure 

10.6.  Because the damped correlation structure with θ=0.5 and φ =0.85 approximates the 
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within-household association in Commute Atlanta data the best among the three 

scenarios presented in Figure 10.4, parameters θ=0.5 and φ =0.85 are chosen for this and 

subsequent analyses. 
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Figure 10.6 Sample Size versus Expected Policy Impact 

 
 
 

Figure 10.6 shows that, not surprisingly, the larger the absolute value of price 

elasticity, the smaller the sample size is required.  As the smallest VMT difference that 

needs to be detected decreases, the required sample size quickly increases.  For example, 

under the design scheme where the baseline period and the pricing period each lasts for 9 

months, the required sample size is 106 if the price elasticity is -0.30, or a 21% decrease 

in VMT is expected, whereas the required sample size is 176 if the price elasticity is -
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0.22, or a 17% decrease in VMT is expected, but a 528-household sample is required if 

the price elasticity is -0.11, corresponding to a 9% decrease in VMT.   

10.6. Missing Data 

Missing data is a very common issue in practice.  In GPS-based panel surveys, 

missing data mainly arises from equipment issues and participants dropout.  Borrowing 

similar concepts from clinical trials, missing data arising from equipment issues can be 

viewed approximately as “staggered entry”, i.e. household travel data are accrued over a 

period of time as the equipment issues get resolved.  Participating households may also 

be lost to follow-up due to dropout and various other reasons, sometimes referred to as 

panel attrition, e.g. (Brownstone, et al., 1999).  In the Commute Atlanta study, the rate of 

equipment issues is about 11%.  At the beginning of the sample recruitment in 2003, 

there were 268 households in the sample.  At the end of the pricing study in 2006, there 

were only 95 households with valid travel data and demographic information.  This 

amounts to a loss-to-follow-up rate of 1.8% per month.  Given such information, the 

{ }tπ  as called for in Table 7.1 is outlined in Table 10.3.  The procedures are described in 

detail below. 
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Table 10.3 Procedures of Deriving the { }tπ  
Pr[Λ ≥t] Time Point 

in Pricing 
Period 

(a) 
Staggered entry 

(b) 
Loss to follow-up 

(c) 
Joint

(d) 
Pr[ ]t tπ = Λ =  

1 1.000 1.000 1.000 0.126 
2 0.890 0.982 0.874 0.110 
3 0.793 0.964 0.765 0.096 
4 0.706 0.947 0.669 0.084 
5 0.629 0.930 0.585 0.073 
6 0.560 0.914 0.511 0.064 
7 0.498 0.897 0.447 0.056 
8 0.444 0.881 0.391 0.049 
9 0.395 0.865 0.342 0.342 

 
 

Define Λ  to be a random variable that signifies the number of months observed 

in the pricing period.  All households are assumed to provide baseline data.  Column (a) 

provides Pr[Λ ≥t] that arises from the staggered entry considerations due to equipment 

issues.  All households are expected to provide at least one month of data in the pricing 

period.  Given the equipment issue rate of 11%, the probability of households providing 2 

or more months of data is 0.890, the probability of providing at least 3 months of data is 

0.890×0.890=0.793, and so on.  Column (b) considers Pr[Λ ≥t] that arises from loss to 

follow-up.  Similarly, all households are expected to provide at least one month of data in 

the pricing period.  The probability of households providing 2 or more months of data is 

0.982, the probability of households providing at least 3 months of data is 

0.982×0.982=0.964, and so on.  The joint probability of providing at least t months of 

data, as shown in column (c), is the product of columns (a) and (b).  The probability of 

providing the first t observations only is computed as Pr[ ] Pr[ 1]t t tπ = Λ ≥ − Λ ≥ + , and is 

given by column (d).   
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With the same design specifications of the Commute Atlanta study, assuming 

price elasticity of -0.11 and correlation parameters of θ = 0.5 and φ = 0.85, the 

consideration of missing data indicates that 727 households need to be recruited per 

group.  This amounts to a 38% increase in required sample size compared to the design 

with the consideration of missing data over a 21-month period1. 

10.7. Summary of Sample Size Analysis for Before-and-After Studies 

The analysis in this chapter has several implications on sample size planning for 

before-and-after studies. 

1. The required sample size assuming the same design as the Commute 

Atlanta study with expected price elasticity of -0.11 is 528 households, 

much larger than the originally planned sample size. 

2. A larger sample size than 528 would be required if the number of months 

in each period were smaller than 9 months, with fixed starting month of 

October. 

3. The consideration of missing data will increase the required sample size 

by about 38% compared to the sample size requirement without such 

consideration, based on the rate of missing data in the Commute Atlanta 

study.   

The analyses in this chapter did not stratify the population into distinct 

demographic groups.  The small number of households in the Commute Atlanta sample 

does not provide enough data for analyses on individual demographic groups.  

Stratification may increase or decrease the required sample size, depending on the 

                                                 
1 From October 2004 to June 2006. 
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relative magnitude of between-stratum and within-stratum variability.  Proper 

stratification where between-stratum variability is much more significant than within-

stratum variability can lead to overall smaller samples.  Further research is warranted 

when data from similar before-and-after studies with larger sample sizes become 

available. 

The analyses in this chapter also assumed that the pricing incentives have the 

same amount of impact on household travel behavior across all demographic groups.  

This assumption will likely need to be relaxed in future research, because some 

households are likely to be more sensitive to a policy measure than others, as seen in the 

household responses to the pricing incentives in the Commute Atlanta study (Xu, et al., 

2009b).  This chapter demonstrated how the required sample size would increase as the 

expected magnitude of policy impact decreases, implying that the demographic group in 

which a smaller policy impact is expected would require a larger sample size.  This 

notion will need to be confirmed with empirical evidence in the future.  
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CHAPTER 11  

CONCLUSIONS 

 

This chapter discusses the implications and contributions of this dissertation.  The 

first section summarizes the research findings.  The second section offers some 

suggestions for future research directions. 

11.1. Summary of Research Findings 

The purpose of this dissertation was to develop a framework and methods to 

estimate sample size requirements for global positioning system (GPS) based panel travel 

surveys.  The goals of the research were threefold: 

1. Evaluate the trade-offs between sample size and length of study for obtaining 

reliable estimates of the means of travel behavior variables 

2. Relate sample size requirements to regression analysis suited for longitudinal 

travel data 

3. Estimate minimum sample size for before-and-after studies in the context of 

transportation policy evaluation 

 

Given these goals, the following technical tasks had to be accomplished: 

• Differentiate the between-household (cross-sectional) and within-household 

(longitudinal) information in household travel behavior 

• Characterize the variability of travel behavior associated with natural temporal 

rhythms and demographic changes 
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• Adapt generalized estimating equation (GEE) procedures to the analysis of GPS-

based panel data for travel behavior studies 

• Explore the distributional properties and correlation structures of key travel 

behavior variables 

• Apply GEE procedures to regression analyses and before-and-after studies of 

travel behavior variables as the basis for sample size estimation for such analyses 

 

This dissertation utilizes the data collected in the Commute Atlanta study to 

accomplish the aforementioned technical tasks, and hence, the overall goals.  Intra-

regional travel behavior and long-distance travel behavior were examined separately.  

The intra-regional travel dataset includes 95 households, the monitoring period spanning 

from October 2004 to June 2005, and from October 2005 to June 2006, providing 

250,580 intra-regional trips totaling 1.62 million VMT.  The long-distance travel dataset 

covers the period from January 2004 to June 2006 for 94 households, providing 0.48 

million VMT from 1,006 long-distance tours.  The uniqueness of GPS-based panel data is 

assessed through a literature review, exploratory data analysis using the bootstrap method, 

and a detailed study on household demographic variability using a case study approach. 

Based upon a literature review of current trends in travel demand forecasting to 

adopt activity-based models and existing GPS-based travel surveys, the GPS technology 

enables extended monitoring periods for travel surveys without increasing respondent 

burden.  This capability can improve the accuracy of activity-based models and 

associated transportation policy evaluation, because the longitudinal information 

provided by panel surveys is the only means to potentially establish causal relationships.  
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However, the current travel demand models have not taken full advantage of the strengths 

of GPS-based panel surveys, possibly due to the higher cost of such surveys.  Therefore, 

a procedure to estimate sample size for GPS-based panel surveys for travel behavior 

studies is needed to ensure the cost-effectiveness of such studies. 

The exploratory data analysis in this dissertation employed bootstrap techniques, 

and revealed the sources and magnitude of variability intrinsic to GPS-based panel data 

that arises from temporal factors and household demographic characteristics.  The 

exploratory data analysis provided graphic presentations of the between-household and 

within-household variability.   

The travel variability associated with household demographic changes was 

examined using a case study approach.  Experiences from the Commute Atlanta study 

showed that more than 70% percent of the households participating in the pricing study 

underwent one ore more major demographic changes over the study period between 

October 2004 and June 2006.  The unstable household demographic characteristics will 

need to be controlled for in transportation policy evaluation. 

With regard to obtaining reliable estimates of population averages for travel 

behavior variables, intra-regional travel and long-distance travel require very different 

survey schemes.  Applying re-sampling techniques, this dissertation found that a two-day 

survey with about 250 households and a 20-day survey with about 170 households will 

provide 10% relative precision in the estimate for average weekday intra-regional VMT.  

Considering the trade-offs between the number of households needed and the length of 

the survey, practitioners will have to compare the incremental costs of adding a 

household versus extending the length of the survey to achieve optimal cost-
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effectiveness.  With the advancement of GPS technologies coupled with web-based 

survey applications, extending the length of a survey would incur marginal cost, even 

though a GPS-based survey is generally more expensive than a paper diary survey per 

household.  Given the savings on number of households, a GPS-based survey with 

extended monitoring period (e.g. a month) may be more cost-effective than a paper diary 

survey with a larger number of households.  In addition, GPS-based surveys can provide 

more accurate information on household travel behavior, as presented in the literature 

review of this dissertation.  For long-distance travel, often considered as rare events, a 

much longer monitoring period and a much larger sample size than those available from 

the Commute Atlanta sample are needed to achieve a 10% relative precision in monthly 

number of long-distance tours.  The monthly number of long-distance tours for each 

household approximates the Poisson distribution, implying that a longer monitoring 

period is needed for households that undertake long-distance travel less frequently.  For 

example, for households that only travel long-distance once every 30 months (0.03 long-

distance tours per month), a survey will need to monitor 480 households for two (2) years 

to achieve 10% relative precision, whereas for households that on average travel long-

distance twice every month, a survey will only need to monitor seven (7) households for 

two (2) years to achieve the same 10% relative precision. 

The effort to relate sample size estimation to regression analysis and before-and-

after studies requires the generalized estimating equation (GEE) procedure.  The GEE 

procedure is an extension of the generalized linear models (GLMs) to correlated data.  To 

fit the data to GLMs using the GEE procedure, the distributions and correlation structures 

of intra-regional and long-distance travel variables were examined. 
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Daily intra-regional VMT and monthly long-distance VMT were found to 

approximate Tweedie distributions.  The unique feature of Tweedie distributions is that 

these distributions can model non-negative continuous data with exact zeros.  In 

transportation applications, Tweedie distributions can be considered as compound 

Poisson distributions, where the outcome variables (e.g. daily intra-regional VMT and 

monthly long-distance VMT) are the Poisson sum of gamma variables.  Under the 

assumption of Tweedie distributions, the monthly number of long-distance tours should 

be Poisson distributed.  The formal statistical analyses in this dissertation supported the 

Poisson assumption of the monthly number of long-distance tours. 

Relating sample size estimation to regression analysis, it is important to adopt a 

suitable model form for longitudinal data differentiating the cross-sectional and 

longitudinal effects.  It is possible to examine how households would change their travel 

behavior as their demographic characteristics change using a small number of households 

combined with an extended survey period.  It would require a large number of 

households and a long survey (preferably more than a year) to detect both the cross-

sectional and longitudinal effects.   

This dissertation adapted the work of Rochon (1998) to estimate the minimum 

sample size for before-and-after studies in the context of transportation policy evaluation.  

The results showed that the minimum sample size is sensitive to extreme values in the 

data.  In general, the required sample size decreases as the number of months in the 

“before” and “after” periods increases, even though seasonal variability could interfere 

with the decreasing trend of sample size when the number of months is small, e.g. less 

than six (6) months.  This decreasing trend of minimum sample size as the length of 
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study increases implies that a panel survey consisting of two two-day waves one year 

apart may require a very large number of households in the sample, and that the 

minimum sample size may be very sensitive to temporal variability.  The results also 

showed that the minimum sample size increases as the degree of within-household 

correlation in the data decreases.  Further, the minimum sample size was found to be 

negatively correlated with the expected size of the policy impact.  Assuming a “damped” 

correlation structure with θ = 0.5 and 0.85φ = , the Commute Atlanta study would have 

required 528 households, expecting a 9% reduction in weekday intra-regional VMT.  

Finally, the consideration of missing data due to equipment issues and sample attrition 

would increase the required sample size by about 37% percent, everything else held 

equal, based on the rate of missing data in the Commute Atlanta data under the design 

scheme where gasoline prices are controlled for without the control group.  These 

findings are generally in agreement with sample size guidelines developed in biomedical 

research.  The caveat is that the number of households estimated through these sample 

size analyses are confounded by the representativeness of the Commute Atlanta data, and 

may have limited applicability to other studies.  Nevertheless, these results indicate that a 

panel survey with a sample size of a few hundred households is needed for policy 

evaluation.  The results also depict how the minimum sample size would vary with the 

assumed correlation structure and expected policy impact, presenting the required sample 

size if assumptions for other studies differ from the experiences with the Commute 

Atlanta data.   

To summarize, this dissertation demonstrated that implementing a GPS-based 

panel travel survey would require special consideration of the nature of longitudinal data 
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at both the design and analysis stages.  The variability of longitudinal travel data arise 

from various sources, so it is important to partition the variability into within-household 

and between-household portions for the regression analysis in travel demand forecasting 

and before-and-after studies in the context of transportation policy evaluation.  Given the 

unstable household demographic characteristics described in this dissertation, and other 

factors such as fluctuations in gasoline prices that may influence household travel 

demand, it is important that exogenous and endogenous confounding effects be 

adequately acknowledged and adjusted through regression modeling, and further 

appropriately reflected for sample size estimation in before-and-after studies. 

This dissertation has emphasized that the main goal of a panel survey would be to 

characterize within-household travel behavior changes in response to policy measures, 

economic trends or demographic shifts over time.  This strength of GPS-based panel 

surveys implies that such surveys would not replace conventional one-day or two-day 

cross-sectional surveys, but to complement the cross-sectional surveys so that dynamic 

changes can be accurately estimated for future trends.  The purpose of this dissertation 

was not to prescribe a fixed sample size for all GPS-based panel surveys, but to establish 

a framework and methods so that different regions and agencies could adopt these 

methods to estimate the minimum sample size given the data characteristics and study 

objectives that suit their situations. 

11.2. Limitations and Future Research 

The small number of households in the Commute Atlanta study was the most 

important limiting factor in this dissertation research.  The results from this research may 

have limited transferability to other metropolitan areas.  The methodology and results 



218 

from this study will need to be validated and updated with data from other regions, when 

such data become available. 

Due to the small number of households in the Commute Atlanta study, it was 

difficult to extract useful information for any demographic group.  The largest number of 

households in a demographic stratum in which household income, household size and 

total number of vehicles owned were controlled for was 18.  Therefore, most analyses in 

this dissertation were not able to consider refined sample stratification schemes.  For 

example, the interaction between temporal factors and demographic characteristics were 

not analyzed.  Additionally, in regression analysis for intra-regional VMT, the income 

variable was not included in the model because the incorporation of household income 

would require specifying market segments.  Finally, the impact of pricing policy was 

assumed to be identical across the entire sample in the analyses for before-and-after 

studies, when households in different demographic groups would likely respond to 

pricing incentives with varying degrees of sensitivity.  These aspects and their impacts on 

sample size requirements will need to be evaluated with information from a much larger 

sample. 

Compared to cross-sectional surveys, the design of a panel survey is more 

complex in that there are practically endless compositions of a panel, specified by the 

non-inclusive list of considerations below: 

• The length of the entire study 

• The number of repeated measurements, or waves 

• The length of the continuous monitoring period in each wave 

• The placement of each wave in time 



219 

o The length of intervals between waves 

o Whether the waves should be equally spaced 

Future research can perform refined analyses to evaluate the impact of the 

aforementioned design considerations on sample size requirement.  In addition to 

following statistical guidelines, researchers and practitioners will also need to identify the 

most cost-effective design based on incremental costs per observation and per household. 
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APPENDIX A 

BETWEEN-HOUSEHOLD AND WITHIN-HOUSEHOLD 

VARIABILITY 

 
 
 

 
Figure A.1 Between-Household and Within-Household Day-of-Week Variability with 

Regard to Daily Intra-Regional VMT. 
Each series of error bars represents an individual household. 

 
 
 



221 

 
Figure A.2 Between-Household and Within-Household Seasonal Variability with Regard 

to Number of Intra-Regional Trips per Day 
Each series of error bars represents an individual household. 
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Figure A.3 Between-Household and Within-Household Seasonal Variability with Regard 

to Daily Intra-Regional VMT 
Each series of error bars represents an individual household. 
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Figure A.4 Between-Household and Within-Household Seasonal Variability with regard 

to Number of Long-Distance Tours per Month. 
Each series of error bars represents an individual household. 
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 Figure A.5 Between-Household and Within-Household Seasonal Variability with Regard 

to Monthly Long-Distance Tours VMT. 
Each series of error bars represents an individual household. 
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Figure A.6 Association between Daily Intra-Regional Number of Trips and Household 

Income 
Error bars represent 95% bootstrap CI of household means of number of intra-regional 

trips per day. 
 

 
 
 



226 

 
Figure A.7 Between-Household and Within-Household Variability in Number of Intra-

Regional Trips per Day by Income Group 
Each error bar represents a household. 
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Figure A.8 Association between Daily Intra-Regional Number of Trips and Household 

Size 
Error bars represent 95% bootstrap CI of household means of number of intra-regional 

trips per day. 
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Figure A.9 Between-Household and Within-Household Variability in Number of Intra-

Regional Trips per Day by Household Size 
Each error bar represents a household. 
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Figure A.10 Between-Household and Within-Household Variability in Daily Intra-

Regional VMT by Household Size 
Each error bar represents a household. 
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Figure A.11 Association between Daily Intra-Regional Number of Trips and Total 

Number of Vehicles Owned 
Error bars represent 95% bootstrap CI of household means of number of intra-regional 

trips per day. 
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Figure A.12 Between-Household and Within-Household Variability in Number of Intra-

Regional Trips per Day by Total Number of Vehicles Owned 
Each error bar represents a household. 
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Figure A.13 Between-Household and Within-Household Variability in Daily Intra-

Regional VMT by Total Number of Vehicles Owned 
Each error bar represents a household. 
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Figure A.14 Between-Household and Within-Household Variability in Number of Long-

Distance Tours per Month by Income Group 
Each error bar represents a household. 
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Figure A.15 Association between Monthly Long-Distance VMT and Income 

Error bars represent 95% bootstrap CI of household means of monthly long-distance 
VMT. 
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Figure A.16 Between-Household and Within-Household Variability in Monthly Long-

Distance VMT by Income Group 
Each error bar represents a household. 
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Figure A.17 Between-Household and Within-Household Variability in Number of Long-

Distance Tours per Month by Household Size 
Each error bar represents a household 
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Figure A.18 Association between Monthly Long-Distance VMT and Household Size 
Error bars represent 95% bootstrap CI of household means of monthly long-distance 

VMT. 
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Figure A.19 Between-Household and Within-Household Variability in Monthly Long-

Distance VMT by Household Size 
Each error bar represents a household. 
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Figure A.20 Between-Household and Within-Household Variability in Number of Long-

Distance Tours per Month by Total Number of Vehicles Owned 
Each error bar represents a household. 
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Figure A.21 Association between Monthly Long-Distance VMT and Total Number of 

Vehicles Owned 
Error bars represent 95% bootstrap CI of household means of monthly long-distance 

VMT. 
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Figure A.22 Between-Household and Within-Household Variability in Monthly Long-

Distance VMT by Total Number of Vehicles Owned 
Each error bar represents a household. 
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APPENDIX B 

WITHIN-HOUSEHOLD ASSOCIATION 

 

Figure B.1 and Figure B.2 show each of the 18 choose 2 scatterplots of responses 

from households at different times.  The months are labeled relative to the beginning of 

the study, so month 1 is the first month (October, 2004), and month 21 is the last month 

(June, 2006) of the study.  The red lines divide the matrices into three major sections – 

the upper left section illustrates the correlations among months within the baseline 

period; the lower right section represents the correlations among months within the 

pricing period; the lower left section represents the correlations among months between 

the baseline and the pricing periods. 

Notice from the main diagonal of both scatterplot matrices that there is substantial 

positive correlation between repeated observations on the same household that are one 

month apart.  The degree of correlation decreases as the observations are moved farther 

from one another in time, corresponding to moving farther from the diagonal.  While this 

phenomenon is true to both the number of trips and the VMT, the degree of correlation in 

the VMT decreases faster than that of the number of trips.  Notice also that the 

correlations in both figures are reasonably consistent along a diagonal in the matrices.  

This phenomenon is more prominent in Figure B.1.  This indicates that the correlation of 

number of trips depends more strongly on the time between observations than on their 

absolute times.  The correlation of VMT, however, seems to depend both on the time 
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between observations and on absolute times, which could be associated with some 

explanatory variables such as gas prices and pricing incentives.   

The red ovals in Figure B.1 and Figure B.2 highlight correlations in the months 

that are exactly one year apart.  In other words, the scatterplots in the red ovals depict the 

impact of seasonality in travel.  If seasonality is prominent, one should expect to see 

stronger correlations in the scatterplots highlighted by the red ovals.  It is difficult to 

identify stronger correlations between the same months from the scatterplots, but the 

correlation matrices in Section 8.2 were able to reflect the presence of seasonality. 
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Figure B.1 Scatterplot Matrix of Monthly Number of Intra-Regional Trips.   

Axis lables are months relative to beginning of study. 
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Figure B.2 Scatterplot Matrix of Monthly Intra-Regional VMT 

Axis labels are months relative to beginning of study. 
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Table B.1 Estimated Correlation Matrix for Monthly Number of Long-Distance Tours 
Entries are Spearman’s ( , )ij ikY Yρ , 1 30ij ikt t≤ < ≤  months1. 

 tij 
tik 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
2 .48*                                     
3 .54* .52*                                   
4 .32* .45* .28*                                 
5 .48* .45* .43* .42*                               
6 .58* .54* .50* .42* .47*                             
7 .43* .57* .46* .46* .61* .60*                           
8 .49* .53* .38* .44* .58* .47* .52*                         
9 .39* .32* .46* .43* .50* .64* .52* .54*                        
10 .28* .36* .31* .50* .21* .38* .28* .47* .31*                       
11 .37* .27* .31* .44* .42* .34* .45* .39* .42* .35*                      
12 .37* .29* .27* .54* .32* .36* .37* .45* .31* .47* .53*                     
13 .52* .55* .38* .49* .38* .47* .38* .40* .34* .40* .40* .48*                    
14 .19 .18 .03 .26* .23* .16 .25* .26* .11 .28* .34* .45* .52*                   
15 .20 .18 .22* .17 .20 .29* .20* .18 .20 .30* .13 .30* .43* .32*                  
16 .13 .22* .18 .39* .29* .35* .35* .35* .37* .56* .33* .48* .41* .39* .35*                 
17 .29* .23* .14 .32* .35* .26* .24* .43* .29* .24* .34* .30* .37* .38* .37* .46*                
18 .26* .21* .28* .33* .38* .35* .21* .47* .39* .33* .29* .42* .31* .28* .47* .31* .46*              
19 .23* .26* .13 .20 .07 .25* .22* .34* .18 .32* .29* .19 .28* .31* .29* .39* .35* .18            
20 .11 .01 .13 .15 .10 .06 .12 .15 .17 .19 .22* .24* .25* .25* .29* .20 .39* .31* .30*           
21 .25* .16 .07 .35* .15 .28* .12 .23* .39* .26* .25* .21* .29* .26* .22* .26* .20 .30* .40* .40*          
22 .23* .44* .27* .62* .45* .30* .44* .51* .37* .65* .47* .45* .47* .31* .21* .55* .47* .29* .40* .26* .34*         
23 .29* .26* .26* .27* .19 .26* .19 .22* .28* .27* .35* .36* .39* .26* .17 .27* .21* .35* .24* .18 .26* .19        
24 .38* .31* .23* .44* .21* .38* .29* .38* .32* .50* .31* .44* .42* .39* .37* .41* .36* .53* .44* .26* .45* .35* .46*       

                                                 
1 *: Correlation is significant at 0.05 level (two-tailed) 
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Table B.1 (continued) 
25 .20 .16 .30* .15 .09 .21* .12 .27* .29* .27* .37* .42* .29* .23* .21* .27* .12 .32* .21* .31* .20 .18 .52* .31*      
26 .24* .31* .12 .22* .28* .12 .22* .40* .16 .19 .24* .36* .28* .27* .32* .24* .34* .35* .24* .29* .48* .36* .25* .31* .19     
27 .19 .13 .23* .01 .18 .24* .16 .25* .31* .21* .21* .30* .34* .29* .45* .30* .25* .37* .33* .30* .33* .26* .35* .25* .42* .39**    
28 .07 .04 .03 .24* .20 .08 .27* .18 .12 .12 .22* .12 .28* .47* .31* .25* .28* .34* .30* .22* .26* .24* .20 .39* .32* .30* .24*   
29 .22* .18 .16 .15 .27* .10 .13 .27* .13 .09 .16 .22* .33* .41* .33* .27* .58* .33* .25* .43* .21* .20 .15 .25* .18 .23* .31* .42*  
30 .07 .17 .16 .22* .14 .32* .19 .27* .26* .39* .34* .43* .30* .30* .49* .48* .35* .32* .26* .21 .26* .39* .05 .17 .33* .24* .38* .32* .46*

 
 
 

Table B.2 Estimated Correlation Matrix for Monthly Long-Distance VMT 
Entries are Spearman’s ( , )ij ikY Yρ , 1 30ij ikt t≤ < ≤  months1. 

 tij 
tik 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
2 .50*                            
3 .52* .49*                           
4 .25* .33* .20                           
5 .45* .43* .41* .37*                         
6 .49* .45* .40* .36* .36*                        
7 .42* .51* .33* .34* .57* .52*                       
8 .49* .52* .34* .32* .58* .36* .46*                      
9 .43* .27* .45* .33* .50* .59* .44* .49*                     
10 .19 .24* .19 .48* .14 .27* .10 .36* .16                     
11 .35* .20 .29* .42* .39* .30* .35* .29* .38* .23*                    
12 .35* .28* .22* .49* .28* .36* .29* .40* .23* .39* .47*                  
13 .46* .51* .33* .41* .32* .45* .27* .36* .29* .28* .35* .49*                 
14 .17 .17 -.01 .23* .22* .16 .22* .22* .06 .22* .35* .45* .52*                  

                                                 
1 *: Correlation is significant at 0.05 level (two-tailed) 
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Table B.2 (continued) 
15 .17 .16 .19 .16 .21* .32* .16 .14 .17 .24* .11 .31* .42* .28*             
16 .06 .15 .15 .34* .29* .38* .28* .26* .25* .53* .26* .43* .33* .33* .33*              
17 .29* .24* .11 .20 .31* .26* .22* .41* .24* .24* .28* .29* .37* .36* .29* .46*             
18 .22* .18 .20* .22* .34* .23* .17 .42* .22* .25* .20 .41* .29* .28* .45* .32* .42*            
19 .28* .29* .18 .21* .09 .28* .25* .38* .17 .34* .34* .22* .28* .29* .15 .34* .32* .10            
20 .12 .03 .15 .12 .11 .08 .08 .15 .16 .13 .24* .25* .25* .23* .21* .17 .34* .27* .21*           
21 .28* .16 .06 .35* .17 .28* .09 .20 .39* .19 .31* .26* .26* .25* .13 .16 .17 .18 .30* .24*          
22 .19 .40* .24* .53* .41* .30* .35* .46* .29* .61* .43* .43* .46* .36* .18 .54* .52* .29* .43* .23* .31*        
23 .27* .23* .21* .20 .15 .24* .12 .13 .19 .21* .36* .28* .34* .24* .15 .23* .16 .26* .24* .10 .26* .18        
24 .39* .29* .20* .42* .18 .39* .25* .31* .26* .46* .28* .47* .39* .32* .33* .40* .33* .50* .43* .23* .42* .35* .42*      
25 .15 .16 .29* .10 .10 .20 .02 .22* .25* .15 .35* .38* .29* .24* .23* .20 .13 .29* .18 .23* .15 .16 .39* .22*      
26 .31* .40* .16 .20* .36* .15 .27** .46* .17 .14 .26* .36* .31* .25* .26* .17 .36* .41* .21* .19 .43* .38* .18 .33* .16     
27 .22* .12 .23* -.05 .21* .20 .10 .20 .25* .13 .22* .25* .30* .23* .46* .22* .25* .26* .23* .17 .27* .25* .18 .17 .34* .30*   
28 .05 .04 -.01 .28* .21* .11 .26* .18 .15 .14 .21* .14 .28* .44* .26* .25* .19 .29* .26* .12 .24* .22* .13 .34* .24* .29* .15   
29 .24* .23* .16 .12 .35* .11 .15 .28* .12 .07 .16 .26* .32* .37* .24* .27* .47* .36* .15 .42* .16 .20 .16 .25* .14 .22* .33* .32* 
30 .04 .15 .10 .20 .11 .34* .08 .23* .19 .33* .28* .39* .33* .30* .44* .47* .34* .26* .24* .18 .27* .38* -.04 .16 .28* .23* .33* .36* .39* 
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