Project Information Form

Project Title	Full-Scale Wall of Wind Testing of Variable Message Signs (VMS)
	Structures to Develop Drag Coefficients for AASHTO Supports
	Specifications
University	Florida International University
Principal Investigator	Arindam Gan Chowdhury, PhD
PI Contact Information	10555 W. Flagler Street
	Engineering Center EC 3604
	Miami, FL 331/4
	F-mail: chowdhur@fiu.edu
Funding Source(s) and	Georgia Institute of Technology
Amounts Provided (by each	FIU: \$90,000 UTC + \$90,000 Matching
agency or organization)	UAB: \$70,000 UTC + \$70,000 Matching
agency of organization	
Total Project Cost	\$160,000.00 + \$160,000 Matching
Agency ID or Contract	AWD0000002293
Number	
Start and End Dates	1/8/12 to 1/31/14
Brief Description of	The overall scientific objective of this project is to develop accurate drag
Research Project	coefficients for incorporation in the AASHTO Support Specification to
	foster safer and more economic design of VMS structures. This project
	will facilitate the development of new and separate drag coefficients for
	fatigue design under service load conditions and ultimate strength design
	under extreme wind conditions.
Describe Implementation of	Phase 1 testing on large-scale VMS models was completed. Testing was
Research Outcomes (or why	done at the Wall of Wind facility under fatigue level wind speed. Load
not implemented)	cells were used to measure aerodynamic loading. Drag coefficients are
(Attach Any Photos)	being analyzed from the data. Photos of the test setup are given below:

Impacts/Benefits of	The expected significance and benefits of the research results is
Implementation (actual, not	attributed to: (i) possible economic benefits that can be realized when
anticipated)	using large-scale test-based realistic drag coefficients for fatigue and
	extreme wind and rain, (ii) development of realistic design loads on
	critical ITS infrastructure, and (iii) advancement of fundamental
	knowledge of 3D sign structure aerodynamics.
Web Links	
 Reports Project website 	