Microdynamics of Industrial Location Work-in-progress

Vivek Ghosal Professor, School of Economics Georgia Institute of Technology Atlanta USA

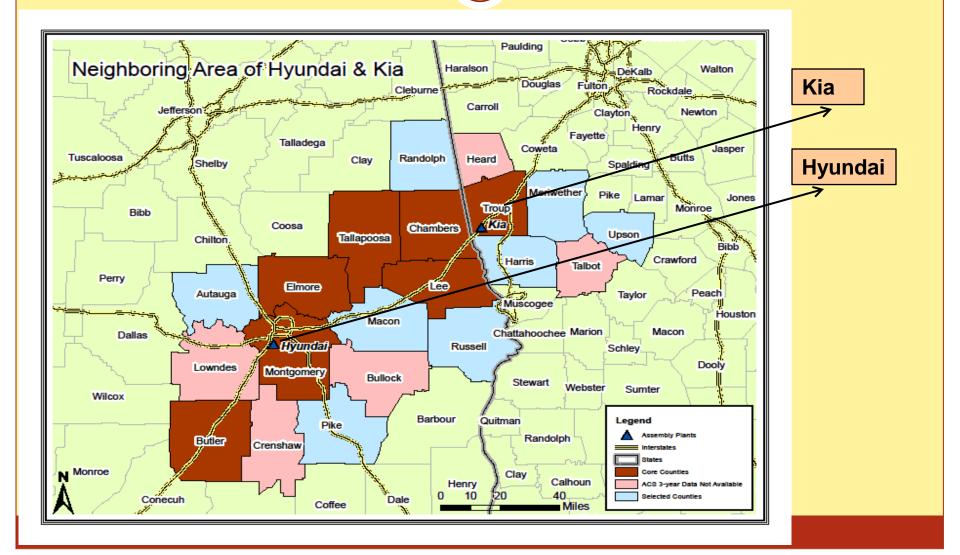
Frank Southworth

Principal Research Scientist School of Civil & Environmental Engineering Georgia Institute of Technology Atlanta USA

Georgia DOT Presentation – Atlanta, GA. June 2013.

Motivation

• States and Nations offer incentives to attract businesses


- Project examines the effects of new industrial location
 - Shorter-run
 - ***** Immediate employment and investment effects
 - ***** Location of complementary businesses
 - Longer-run
 - \star Business and economic development of region
 - Development and infusion of human capital
 - ***** Transportation networks, congestion, infrastructure investments
- Project is strictly work in progress
 - Completion date December 2013
- Will overview framework and selected items today

Project Specifics Automobile Assembly Plant Location

- Effects of location of Kia and Hyundai plants in GA and AL
 - $\circ~$ Hyundai plant in AL, first autos produced in 2005
 - $\circ~$ Kia plant in GA, first autos produced in 2009
- Kia plant in Troup County, GA
 - Truly rural county
 - GA offers \$500 million in incentives
 - State-of-the-art advanced modern manufacturing facility locates in West Point, GA

- $\,\circ\,$ Starts with 250,000 autos/year, now at 360,000 autos/year
- Potential for radical transformative change for the region
- Statistically identify effects
 - ★ Typically this is a big challenge
 - ★ Would not have been possible if this were Detroit
- Relatively clean *natural experiment*
 - Troup County was rural with no existing business-economic base

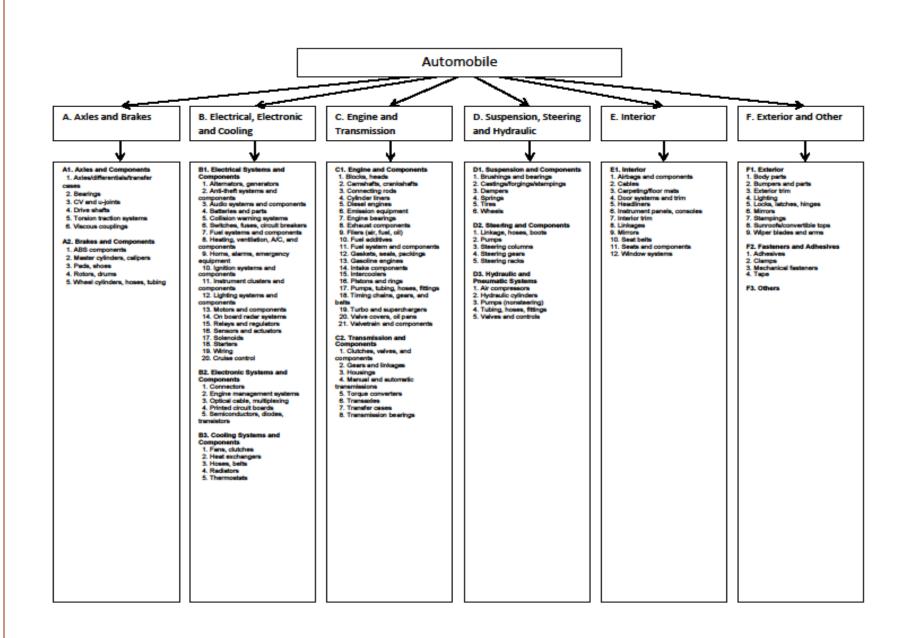
Map 1 – Kia and Hyundai County Areas

Business and Economic Effects

• American Community Survey: we use two 3-year waves

- o 2005-2007, and 2008-2010
- Perfect segmentation for the Kia experiment
 - ★ Plant locates in 2008 November
- We study wide-ranging effects for example:
 - ★ Changes in Population Migration
 - ★ Changes in Occupations (manuf., retail, education, healthcare, etc)
 - ★ Changes in Population and Income
 - ★ Changes in Schooling
 - ★ Changes in Educational Attainment
 - **×** Car registrations

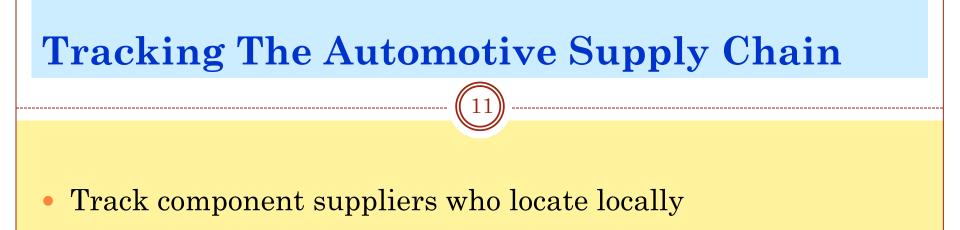
State	County	Core	Ss	ds	abr	popus	popfor	popnat	npop
			06-10	06-10	06-10	06-10	06-10	06-10	06-10
AL	AL		-0.16	-14.70	-14.97	3.48	28.77	25.05	30.43
AL	Autauga	0	37.09	4.33	-49.62	11.93	31.07	-30.79	120.76
AL	Bullock	0							
AL	Bulter	1	29.37	-21.98		2.41	565.00		
AL	Chambers	1	37.11	-38.80	136.67	-3.23	262.50	746.67	198.23
AL	Crenshaw	0							
AL	Elmore	1	-25.46	-22.47	-19.07	4.50	39.79	-9.80	83.41
AL	Lee	1	2.66	7.24	-18.63	8.98	41.00	3.41	57.86
AL	Lowndes	0							
AL	Macon	0	22.47	-31.52	231.82	-6.40	21.91	425.00	-87.50
AL	Montgomery	1	-2.50	3.83	-40.83	1.04	32.76	55.58	22.29
AL	Pike	0	-4.42	77.33	688.46	7.52	94.45	16.36	101.68
AL	Randolph	0	-32.69	-41.34	-12.96	0.14	161.54	78.57	192.11
AL	Russell	0	42.20	23.96	329.51	6.93	-17.73	-33.38	15.21
AL	Tallapoosa	1	-22.25	98.62	142.22	0.87	125.89	105.83	131.88
GA	GA		-5.95	-26.10	-25.61	3.15	11.89	29.17	3.92
GA	Atlanta MSA		-4.95	-33.54	-30.04	1.66	8.69	29.34	-0.71
GA	Harris	0	0.51	-71.79	12.12	14.24	-8.61	-1.35	-26.92
GA	Heard	0							
GA	Meriwether	0	86.80	-69.41	-90.00	-2.96	-25.60		
GA	Talbot	0							
GA	Troup	1	4.20	-28.74	335.09	4.56	92.27	116.92	83.67
GA	Upson	0	-20.75	-53.77	-100.00	-1.37	-0.21	101.03	-26.26
	-			•					


Population Migration Patterns

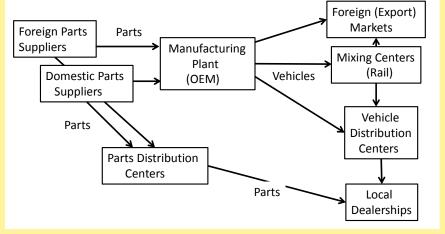
State	County	Core	tclfm	tclfse	tclfsa	tclfeco	tclfem	tclfews	tclfere	tclfetra	tclfefin	tclfeedu
			06-10	06-10	06-10	06-10	06-10	06-10	06-10	06-10	06-10	06-10
AL	AL		5.18	10.32	-1.58	-13.86	-11.68	-22.22	-2.16	-3.12	-5.15	8.49
AL	Core Avg.		14.59	10.36	-5.26	-25.67	-18.17	-15.81	8.55	-2.00	-17.71	22.14
AL	Non-core Avg.		12.78	10.11	-1.96	-18.24	15.59	-37.17	-15.45	-1.33	-19.09	18.32
AL	Autauga	0	14.76	10.74	0.48	-31.19	-14.74	-14.77	5.71	48.87	9.09	30.51
AL	Bullock	0										
AL	Bulter	1				-10.76	-46.48	26.83	14.65	12.06	-10.74	2.09
AL	Chambers	1	9.57	-20.14	-11.92	-38.1	-36.25	-8.09	2.49	-25.89	3.59	8.64
AL	Crenshaw	0										
AL	Elmore	1	37.94	39.53	2.14	-32.36	4.21	-7.9	13.42	-27.72	-4.49	60.83
AL	Lee	1	7.25	16.99	-2.84	-21.37	-6.27	-34.97	2.99	17.82	-18.89	11.81
AL	Lowndes	0										
AL	Macon	0	-24.52	12.08	-22.55	0	66.36	-63.48	-28.47	8.8	-77.44	-2.75
AL	Montgomery	1	-1.74	15.23	0.51	-23.39	-10.29	-10.81	2.02	0.4	-14.4	6.21
AL	Pike	0	11.9	3.62	3.84	-14.81	20.41	-23.22	-16.44	-24.43	-24.39	15.3
AL	Randolph	0	28.07	-13.99	4.22	-32.07	0.29	-51.32	-39.17	-20.85	-17.75	14.03
AL	Russell	0	33.7	38.09	4.22	-13.13	5.63	-33.04	1.12	-19.04	15.03	34.53
AL	Tallapoosa	1	19.93	0.17	-14.19	-28.05	-13.92	-59.89	15.72	11.36	-61.3	43.28
GA	GA		3.43	6.87	-5.45	-25.8	-10.55	-15.06	-1.2	-5.59	-12.85	10.64
GA	Core Avg.		-4.47	-3.56	0.51	-31.39	-10.36	-12.70	19.05	17.66	6.79	-1.17
GA	Non-core Avg.		8.65	4.13	3.46	-24.14	-20.08	20.57	7.17	-22.44	-40.05	31.29
GA	Atlanta MSA		1.36	7.45	-7.96	-27.54	-5.44	-15.39	-3.16	-5.97	-15.98	10.11
GA	Harris	0	28.81	2.91	1.16	-3.09	1.05	128.89	2.71	-7.86	-31.47	58.56
GA	Heard	0										
GA	Meriwether	0				-34.52	-23.94	2.35	22.71	-35.41	-33.68	7.69
GA	Talbot	0										
GA	Troup	1	-4.47	-3.56	0.51	-31.39	-10.36	-12.7	19.05	17.66	6.79	-1.17
GA	Upson	0	-11.51	5.35	5.75	-34.8	-37.36	-69.54	-3.92	-24.05	-54.99	27.62

Occupational Patterns

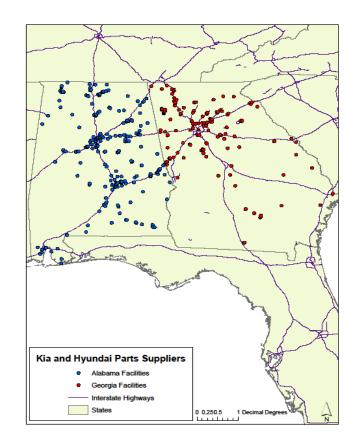
Automotive Supply Chain


- An automobile has several thousand components
- We construct somewhat aggregated supply-chain
- Purpose?
 - Allows us to identify and track components
 - Distinguishes components by category

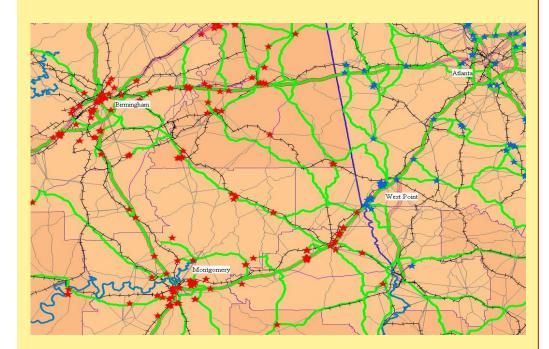
Microeconometric Analysis


• Estimate multipliers for each of our business and economic variables

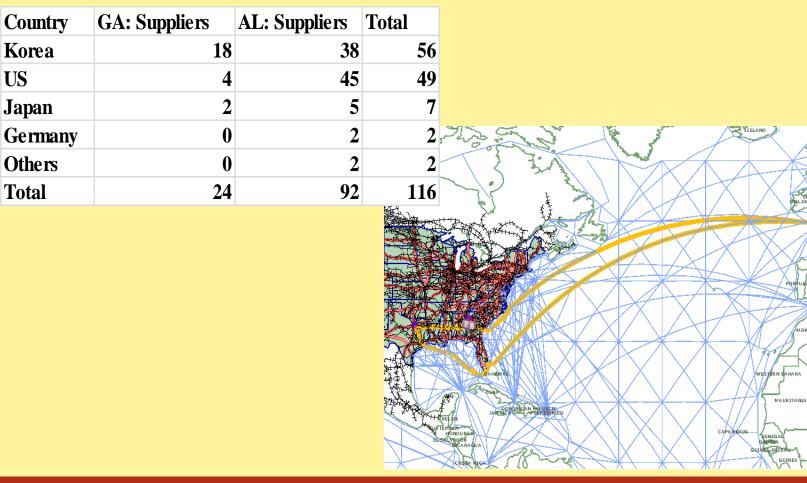
- Paper by Greenstone 2010 provides good review and framework related to theory and econometrics
- Estimate multipliers for **transportation** related effects
 - Demand for transportation is "derived" demand from area business and economic growth



- Track component suppliers from further away: S. Korea, Japan, Germany, Thailand, among others
- Track component inflows
- Demand for transportation, by mode


Transportation Links in An Automotive Industry Supply Chain (Generic)

Supply Chain – Local Component Suppliers & Truck Routes



We have created a database that contains both local and foreign parts suppliers for the Hyundai and Kia plants located in AL and GA.

Supply Chain- Global Component Suppliers & Intermodal Transportation Links

Foreign Suppliers:

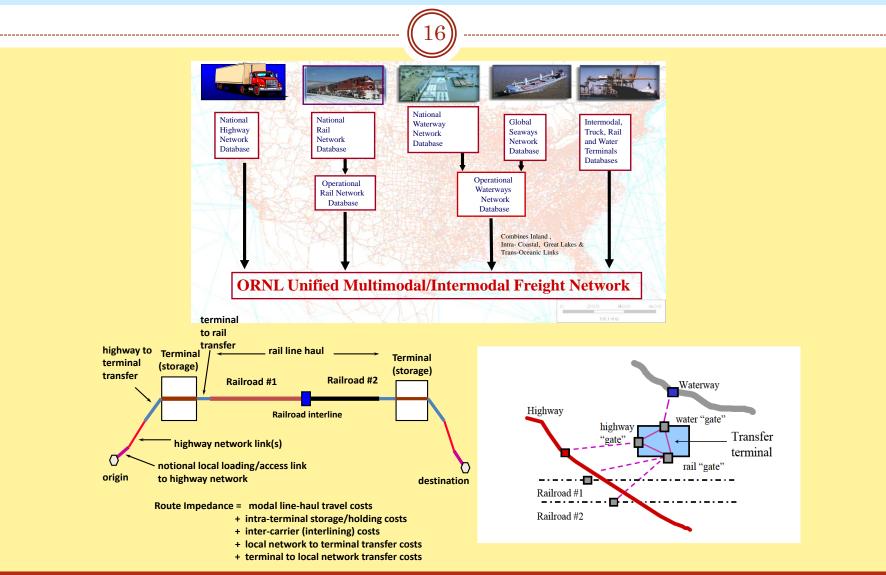
ALGERIA

MALT

Shipping Data

- Completed and analyzing port shipping data for inflow of components
 - Savannah (GA), Brunswick (GA), Mobile (AL)
- Shipments in and out
 - o Hyundai, Kia
 - Local component suppliers as much as possible
- Once this is done at least a reasonable snapshot
 - We know exact auto models being built and their production volumes
 - We know major components per auto
 - Shipping volumes
 - Focus is on only major components

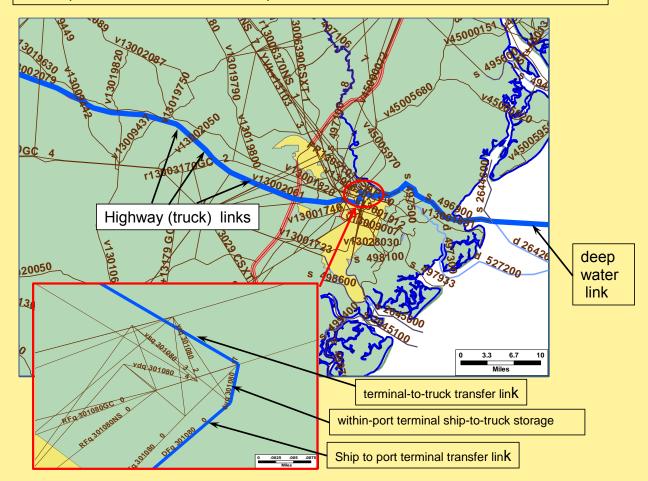
Transportation – Freight Supply Chains & Their Costs


Freight flows: detailed data on local supplier volumes (various sources) and global import shipments (proprietary data source)

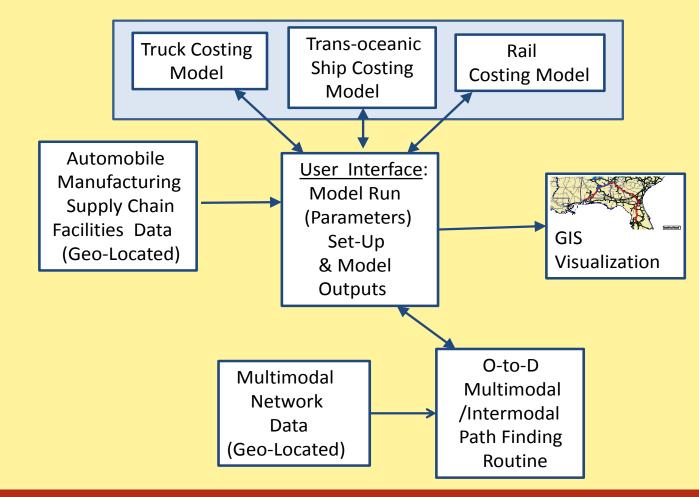
Multimodal/Intermodal/International freight transportation network database: We are currently adding links and nodes to the latest version of the ORNL North America/Trans-Oceanic Freight Network (public domain) database: as used to route freight in past U.S. Commodity Flow Surveys.

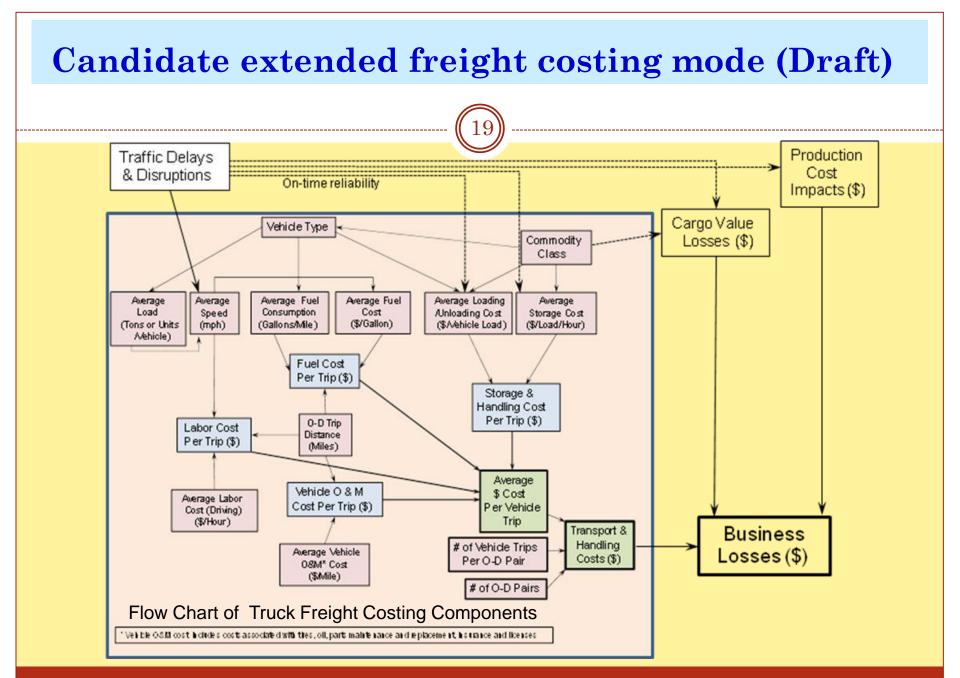
Freight transport cost modeling: of raw materials, auto parts, finished autos, estimated transport costs between supply chain participants and SC "tiers", using a number of different sources (ATRI, CFIRE, ITIC-ST, LMT, STB, WFR)

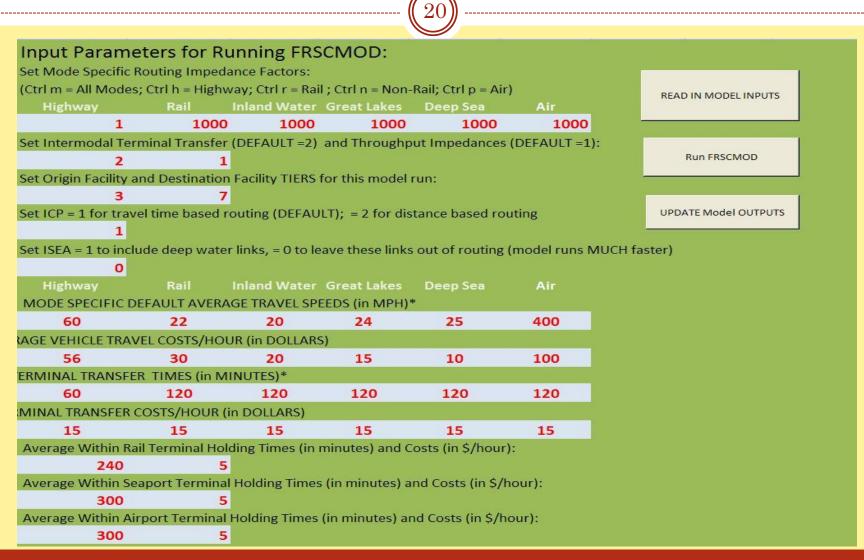
Network links carry mode specific line haul, intermodal transfer and warehouse/ distribution center/seaport storage and handling costs.


Multimodal/Intermodal Transportation Routing & Freight Cost Modeling – Network Database

Ghosal & Southworth. Microdynamics of Industrial Location. June 2013.


Simulating Flows Through A Seaport (Savannah)


Example of Link-Node Based Deep Sea to Truck Transfer: Port of Savannah, GA


Multimodal/Intermodal Transportation Routing & Freight Cost Modeling

Freight Routing Supply Chain (FRSC) Model – In Progress DRAFT

Prototype User Interface for FRSC Model

Microeconometric Analysis

- Business and economic effects
 - Clear natural experiment
 - Core v. non-core counties
 - Controls: State-wide, as well as State largest Metro area
 - $\star\,$ E.g., GA and Atlanta, MSA controls
 - ★ Then examine effects of location
- Once supply-chain and shipping data are complete
 - Effects on transportation
 - Congestion issues
 - Potential necessary investments to facilitate smooth functioning of supply chain and sustain economic development