Understanding the Value of Travel Time Reliability for Freight Transportation

Presenter:

Xia Jin, PhD, Assistant Professor
Kollol Shams, Graduate Student
Md Sakoat Hossan, Graduate Student
Florida International University

UTC Conference for the Southeastern Region, Alabama
March 26, 2015
Outline

• Background
• Purpose
• Objectives
• Challenges
• Tasks :
 – Task 1 : Literature Review
 – Task 2 : Stated Preference Survey Design
 – Others
Background

- Growing demand for freight transportation
- Better understanding of freight behavior
- Increasing role of reliability in freight transportation
Purpose

• Research in understanding the behavior paradigms in the freight industry has lagged behind.

• Only a handful of studies from other countries investigated Value of Reliability (VOR) for freight users.

• This study aims to fill the knowledge gap in understanding how the freight community value travel time reliability in their transportation decisions.
Purpose

• Support **strategic, proactive and responsive** investment decisions that reflect the needs of freight stakeholders, which requires
 – better understanding of how the users (shippers and carriers) respond to system changes in productivity, reliability and capacity, and
 – advanced methods and tools in evaluating the effectiveness of alternative freight management and operational strategies.
Objectives

• Synthesize existing studies on VOR and identify knowledge and data gap;

• Conduct stated preference survey among freight system users to understand their transportation choice decision-making;

• Develop econometric models to estimate VOR by stratification, such as, commodity type, shipping distance, and shipment type, etc.

• Recommend a framework in incorporating VOR in freight analysis and project evaluation.
Challenges

• **Insufficient knowledge** in freight transportation and supply chain management, and lack of mechanism to incorporate the knowledge into the freight planning process;

• **Lack of data** in supporting research and modeling efforts as freight movement data tend to be proprietary in nature, aggregate in geographic scale, and difficult to collect from private sectors; and

• **Lack of guidance** in freight sector survey design in constructing realistic alternative scenarios and questionnaire for the respondents.
Project Tasks

• Task 1: Literature Review
• Task 2: Stated Preference Survey Design
• Task 3: Technical Advisory Committee (TAC) Establishment
• Task 4: Survey Implementation
• Task 5: Data Processing and Model Development
• Task 6: Framework Recommendation
• Task 7: Final Report
Project Tasks

• Task 1: Literature Review
 – A wealth of knowledge in VOR for passenger travel
 – Not limited to only stated preference reliability papers
 – Few studies in the freight industry from other countries
 – SHRP2 reliability projects
 – Nos. of Paper: 83
Project Tasks 1: Literature Review

• Major findings
 – Reliability Measures:
 • Standard variation of Travel time
 • Probability of success or failure against a pre-established threshold value
 – Methods to Estimate the VOR for Freight:
 • Stated Preference (Shippers vs Carriers)
 • Inventory based (tied to inventory management decisions)
Project Tasks 1: Literature Review

• Major findings
 – Market Segmentation:
 • Previous studies focused mostly on mode choice or route choice
 • Common categories:
 – Commodity Type (time sensitivity, amount, values)
 – Shipment characteristics (such as type, weight, distance)
 – Firm’s Characteristics (size, transport ownership, inventory management)
 – Miscellaneous (time of day, congestion vs non-congestion, regional differences)
Project Tasks 1: Literature Review

• Major findings
 – Survey Design:
 • Previous studies mostly used Orthogonal experiment
 • Very few studies used Others experiment, such as Optimal-efficiency, or Adaptive Stated Preference
 • Trade-off among statistical efficiency, complexity, monetary budget and quality of responses
 – Model Specification & Development:
 • Most commonly used attributes: Travel cost, Travel time, Reliability, Loss and/or damage, and Service Frequency & Flexibility
 • Mixed Logit, MNL (with bootstrapping to account for the IIA violation)
Project Tasks 2: SP Survey Design

- **Market Segmentation**
- **Sample Design**
- **Recruitment**
- **Instrument Design**
- **SP Choice**
- **Experimental Design**

Flowchart

```
Survey Method
- Internet
- Computer assisted Telephone Interview (CATI)

Survey Sample Design
- Market segmentation
- Sample size

Questionnaire Design
- Identification of alternatives, attributes & attributes level
- Experimental design
- Generate choice sets

Recruitment
- Recruitment of respondents
- Collection of background information for screening purpose

Sample enough? No
- Yes
- Data processing & Monitoring

Yes
- Revision required?

No
- Retrieval

Yes
- Sample enough?

No
- Pilot Survey

Survey Implementation

Yes
- Revision required?

No
- Main Survey

Model Estimation
- Preliminary VOR Estimates

Model Verification
- Final VOR Estimates

Main Survey
```

Survey Method

- Internet
- Computer assisted Telephone Interview (CATI)

Survey Sample Design

- Market segmentation
- Sample size

Questionnaire Design

- Identification of alternatives, attributes & attributes level
- Experimental design
- Generate choice sets

Recruitment

- Recruitment of respondents
- Collection of background information for screening purpose

Sample enough?

- No
- Yes

Pilot Survey

- Survey Implementation
- Retrieval

Revision required?

- Yes
- No

- Main Survey

Model Estimation

- Preliminary VOR Estimates

Model Verification

- Final VOR Estimates
Project Tasks 2 : SP Survey Design

• Market Segmentation
 • Commodity Type for shippers: Perishable Commodity, Time Sensitivity
 • Shipping Distance for carriers: <50, 50-300, and 300+ miles.
 • Shipment Type: Containerized or Non-Containerized
 • Mode: Truck (Light, Medium, and Heavy), Rail, Waterways and Air

• Sample Design & Data Collection
 • Stratification-based random sampling strategy
 • Database from Local Chamber & TranSearch

• Recruitment Instrument Design
 • Information describing the firm
 • Characteristics of a typical shipment
Project Tasks 2 : SP Survey Design

• SP Choice Experimental Design

<table>
<thead>
<tr>
<th>Experiment Type</th>
<th>Alternatives Type</th>
<th>Nos. of Attributes</th>
<th>Attributes (Level)</th>
<th>Experimental Design</th>
<th>Road</th>
<th>Rail</th>
<th>Air</th>
<th>Waterways</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Within</td>
<td>3</td>
<td>Travel time (5), Cost (5), Reliability (5)</td>
<td>Orthogonal</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>Within</td>
<td>4</td>
<td>Travel time (5), Cost (5), Reliability (5), Departure time (2)</td>
<td>Orthogonal</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Between Modes (Road & Rail)</td>
<td>5</td>
<td>Travel time (5), Cost (5), Reliability (5), Service Flexibility (2), Probability of Property Damage (2)</td>
<td>Manual (Bradley)</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>Between Modes (Road & Rail)</td>
<td>6</td>
<td>Travel time (5), Cost (5), Reliability (5), Service Flexibility (2), Probability of Property Damage (2), Departure time (2)</td>
<td>Orthogonal</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions & Answers

Kollol Shams, Graduate Student
Department of Civil and Environmental Engineering
Email: ksham004@fiu.edu

Md Sakoat Hossan, Graduate Student
Department of Civil and Environmental Engineering
Email: mhoss009@fiu.edu

Xia Jin, Ph.D., AICP
Department of Civil and Environmental Engineering
Florida International University
10555 W. Flagler Street, EC3603, Miami, Florida 33174
Tel: (305) 348-2825
Fax: (305) 348-2802
Email: xjin1@fiu.edu