LIGHT-WEIGHT UHPC-FRP COMPOSITE SYSTEM

Munaf Al-Ramahee and Kevin Mackie, Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL.

Amir Mirmiran, Department of Civil and Environmental Engineering, Florida International University, Miami, FL.

Fouad H. Fouad and Christopher J. Waldron, Department of Civil, Construction, and Environmental Engineering, University of Alabama at Birmingham

2015 UTC Conference for the Southeastern Region
Birmingham, Al.
The purpose of the literature review is to provide support for our hypothesis that:

- UHPC-HSS ribbed deck system
- UHPC-FRP waffle deck system
- Hybrid full-depth UHPC-FRP deck system

can be implemented using Accelerated Bridge Construction (ABC) techniques to help meet the growing demand for rapid bridge rehabilitation and reconstruction across the United States.
Ultra-High Performance Concrete - High Strength Steel Ribbed Deck System

UHPC Two-Way Ribbed Bridge Deck Panel Plan and Cross Section View

http://www.fhwa.dot.gov/publications/research/infrastructure/bridge/07055/
Ultra-High Performance Concrete - Fiber Reinforced Polymer Waffle Deck System

Images taken from full scale laboratory test of UHPC waffle slab bridge deck for Wapello County, Iowa

http://www.hpcbridgeviews.com/i65/Article2.asp
Duraspan (pultrusion)

Kansas (open mold hand lay-up method)

Hardcore (VARTM)
Hybrid Full-Depth Ultra-High Performance Concrete - Fiber Reinforced Polymer Deck System

a) Reinforced concrete

b) Double trapezoidal and hexagonal pultruded components

c) Concrete reinforced with glass FRP reinforcement bars

d) Cell foam wrapped with fiberglass fabric

e) FRP fiberglass deck panel with a corrugated sandwich system

Tests conducted by Alagusundaramoorthy et. al. on four different FRP panels by criteria of the Ohio DOT using reinforced concrete as a baseline.

Department of Transportation Survey Results

Department of Transportation (DOT) Surveys

A questionnaire was sent to several DOTs in the Southeastern U.S. to gather data about basic bridge types and geometries as well as the region’s exposure to accelerated bridge construction (ABC)

Conclusions

- Many older bridges have steel girder systems but pre-stressed concrete girders are the preference for new bridges
- Several states are implementing UHPC, FRP, and HSS in both experimental and actual projects.
- Most states surveyed have used or plan to use ABC in various ways including precast deck panels, emergency repairs, and lateral slide elements.
National Bridge Inventory Data

- Based on the American Association of State Highway and Transportation Officials (AASHTO) NBI for Region 2 (Southeastern U.S.):
 - Of the 168,000+ bridges listed for region 2, 9.1% are classified as structurally deficient
 - Of the 15,357 bridges that are structurally deficient, 22.8% have deficient bridge decks.
 - On average, 22.5% of each state’s deficient bridges is due in part to deficient bridge decks.
Accelerated Bridge Construction Examples

- **Sam White Bridge (Salt Lake City, Utah)**
 - 354’ two-span bridge moved into place in 5 hours using self-propelled modular transporters
 - 10” lightweight concrete precast deck panels with steel plate girders

- **U.S. 6 Bridge over Keg Creek (Iowa DOT)**
 - 210’ three-span steel/precast concrete bridge
 - Used UHPC in the joints to lower the permeability and increase the strength
 - ABC methods decreased construction time from six months to sixteen days

SPMTs moving Sam White Bridge into place
ftp.dot.state.tx.us/pub/txdot-info/brg/0611_webinar/farris.pdf
Objective

The primary objective of the proposed research is to develop an innovative modular high performance lightweight deck options that lend themselves to accelerated bridge construction (ABC).
An FRP bridge deck weighs approximately 80% less than a concrete deck.

- Very Light
- Convenient to transport
- Easy to install
- Short construction period.

UHPC: Very high compression strength

- Can be used as wearing surface

FRP: High tension strength

- CFRP --- bottom layer for tension resistance.
- GFRP --- shear reinforcement

2015 UTC Conference for the Southeastern Region
Test Matrix

<table>
<thead>
<tr>
<th>SP</th>
<th>UHPC thickness</th>
<th>Total Height</th>
<th>Web Angle</th>
<th>Web GFRP Layer</th>
<th>CFRP Layers</th>
<th>Top GFRP (Uni)</th>
<th>Specimen’s Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Cast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5 in.</td>
<td>5 in.</td>
<td>63</td>
<td>3(BI)</td>
<td>4</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>0.5 in.</td>
<td>5 in.</td>
<td>63</td>
<td>3(BI)</td>
<td>4</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>0.5 in.</td>
<td>5 in.</td>
<td>63</td>
<td>4(BI)</td>
<td>3</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>0.75 in.</td>
<td>5 in.</td>
<td>60</td>
<td>4(BI)</td>
<td>5</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>0.5 in.</td>
<td>5 in.</td>
<td>60</td>
<td>3(BI)</td>
<td>4</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>Second Cast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.5 in.</td>
<td>4 in</td>
<td>60</td>
<td>5(BI)</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>0.5 in.</td>
<td>4 in</td>
<td>60</td>
<td>5(BI)</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>0.5 in.</td>
<td>4 in</td>
<td>60</td>
<td>5(BI)</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
</tbody>
</table>
Specimens’ Fabrications

- Laying the peel ply, infusion mesh, and UHPC plate
- Putting the side mold and laying the top glass fiber sheets
- Installing foam and laying shear fiber
- Laying carbon fiber sheets
- VARTM Process
- Final deck after demolding
Test Setup
Test Setup
Results
Results

![Graph showing load vs. displacement for different specimen types.](image)
Results Comparison

2015 UTC Conference for the Southeastern Region
Failure Mode
Conclusions

- This system is good option in ABC field.
- This system Meets the load demand requirement
- More investigations are needed about the interface behavior.
- Future investigations need to include full scale test.
Contact Information:

- **Kevin R. Mackie, PhD, P.E.**
 Civil, Environmental, and Construction Engineering
 University of Central Florida
 Orlando, FL 32816-2450
 Ph: (407) 823-2857, Fx: (407) 823-3315
 Email: Kevin.Mackie@ucf.edu

- **Amir Mirmiran, PhD, P.E.**
 College of Engineering and Computing
 Florida International University
 Miami, FL 33174
 Tel (305) 348-2522, Fax (305) 348-1401
 Email: mirmiran@fiu.edu

- **Fouad H. Fouad, Ph.D., P.E.**
 Civil, Construction, & Environmental Engineering
 University of Alabama at Birmingham
 Birmingham, AL 35294-4440
 (205) 934-8430 - (205) 934-9855
 Email: ffouad@uab.edu
THANK YOU

Questions