Investigation of the effect of drivers' body motion on traffic safety

Angelos Barmpoutis, PhD
University of Florida
Digital Worlds Institute

Alexandra Kondyli, PhD
University of Florida
Department of Civil and Coastal Engineering

Virginia Sisiopiku, PhD
University of Alabama at Birmingham
Department of Civil, Construction, and Environmental Engineering
Overview

- Introduction and Research Motivation
- Methodology
- Data Collection
- Preliminary Data Analysis
- Conclusions
- Next Steps
Introduction and Research Motivation

- Driver-assistance systems are typically focused on vehicle position rather than the driver

Motivation:
- Driver behavior is the key factor that affects safety
- Focus on driver may help improving safety
Introduction and Research Motivation

Key questions:

- What cues can the entire body posture provide us related to safety?
- How can we classify safe or unsafe driving conditions?
- How do these vary by driver type?
- What can we do to help drivers be more alert of their surroundings?
 - Training?
 - Ergonomics?
 - Driver assistance system?
Low-cost infrared depth sensor

- Infrared projector
- and infrared camera
- 320 x 240 depth map
- Skeletal tracking
- (and RGB video camera)
Methodology Overview

- Identify patterns of body postures across drivers when:
 - merging
 - changing lanes
 - are involved in secondary tasks

- Correlate with eye gaze information and video information from the vehicle environment
Field Data Collection

- 40 participants (16 to 65 years old)
- 15 participants completed to date
- Observations of upper body posture and activity AND observations of eye gaze
- Merging, exiting and lane changing maneuvers
- Parking maneuver and texting (parking lot)
- Total duration = 2 hours each
Field Data Collection

- Instrumented vehicle.
- Real-time driver behavior data through PrimeSense™ depth sensor within Kinect™ device.
- Device is connected to a laptop.
- ASL eye tracking glasses and laptop.
Pilot Study

- 4 participants: 2 male, 2 female
- Observations of upper body posture and activity
- Merging, exiting and lane changing maneuvers
- Total duration = 20 minutes each

UTC Conference 2014
Camera was calibrated to record depth values in range or 0.5 to 3.0 m.

Suitable for limited space within the cabin.
Data Analysis

- Test quantitative measures to evaluate driver behavior and identify patterns of driver upper body posture/activity:
 1. Global statistics: mean and standard deviation of the depth value within each pixel across time
 2. Skeleton model – torso orientation
 3. Identification of direction of movement and associated magnitude
Data Analysis – Global Statistics

- Mean depth value: forms a surface which is plotted in 3D using shading
- St. deviation of depth values: color map/intensity added to the mean surface
- Large st. deviation is associated with wide range of motion
Data Analysis – Global Statistics

- Slight head and back activity indicate the use of side mirrors
- Different drivers keep different body postures and angles while performing the maneuvers
- Variations of mean and st. deviation by driver and by task/maneuver
Data Analysis – Skeleton/Torso Model

- 3D coordinates of shoulders, neck, head for real-time segmentation of upper body activity
Data Analysis – Torso Orientation
Data Analysis – Torso Orientation

Torso orientation during a merging maneuver at the same ramp junction
Data Analysis – Direction of Movement

Arm and head movement
Data Analysis – Direction of Movement

- Degree of coordination between head and arm activity
- Consider movements in combination rather than isolation
- Differences by drivers due to:
 - Driver behavior
 - Traffic conditions
Summary and Conclusions

- Novel approach for assessing driver activity
- Develop tools for investigating how different drivers perform various maneuvers and which movements lead to unsafe conditions
- Identify various quantitative measures of driver body posture activity
Next Steps

- Complete naturalistic type driver behavior data collection
- Apply developed methodologies for analyzing observations from different drivers under different maneuvers
- Derive potentially unsafe situations specific to driver body activity
- Provide guidelines for driver training purposes
- Establish framework for an in-vehicle driver-assistance system
THANK YOU!

Angelos Barmpoutis, PhD
angelos@digitalworlds.ufl.edu

Alexandra Kondyli, PhD
azk133@ufl.edu

Virginia Sisiopiku, PhD
vsisiopi@uab.edu

Grant award 2013/051S – STRIDE USDOT