Simulation of Cooperative Vehicle-Highway Automation (CVHA) Behavior on Freeways

Michael Hunter (GaTech)
Angshuman Guin (GaTech)
Michael Rodgers (GaTech)
Mohammed Hadi (FIU)
Ziwei Huang (GaTech)
Wonho Suh (HYU)

March 2015
Research Objectives

- To investigate the benefits and operational issues of CVHA/Autonomous technology using microscopic simulation (VISSIM); specifically modeling:
  - Technology under different traffic conditions and operational parameters (i.e. gap time and headway), and
  - The interactions between equipped and non-equipped vehicles.

- The findings of this research are intended to provide guidance and recommendations to State DOTs and other agencies regarding:
  - The expected impacts of Technology on traffic flow and operations,
  - Regulations on the use of the technology, and
  - Further research needs on autonomous and semi-autonomous technology.
## Assistive/Autonomous Driving Technologies

<table>
<thead>
<tr>
<th>Level</th>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>No-Automation</td>
<td>driver is in complete and sole control</td>
</tr>
<tr>
<td>Level 1</td>
<td>Function-specific Automation</td>
<td>driver has overall control, but can choose to cede limited authority; automation function works independently from one another</td>
</tr>
<tr>
<td>Level 2</td>
<td>Combined Function Automation</td>
<td>automation of at least two primary control functions designed to work in unison</td>
</tr>
<tr>
<td>Level 3</td>
<td>Limited Self-Driving Automation</td>
<td>driver can cede full control of all safety-critical functions under certain conditions; but driver expected to be available for occasional control</td>
</tr>
<tr>
<td>Level 4</td>
<td>Full Self-Driving Automation</td>
<td>vehicle performs all safety-critical driving functions and monitor roadway conditions for an entire trip</td>
</tr>
</tbody>
</table>
Autonomous – acting independently

Automated – predetermined series of operations

Driverless – vehicle takes on all driving tasks
“Nice, but as long as there are readers there will be scrolls.”

http://37.media.tumblr.com/tumblr_m3gsrzgDiG1qav5oho1_1280.png
I believe that for (at least) decades after the introduction of the commercially available driverless vehicle that both human driven and driverless vehicles will be allowed on most facilities and have significant interaction.
Existing Systems

BMW Radar Sensors (Top) & Rearview Mirror Mounted Camera (Bottom) [5]

Autonomous Driving (Top), CVHA System Prompts Driver to Take Control (Right) [7]
Adaptive cruise control (ACC) has been found to increase speeds and eliminate congestion even for a 20% penetration rate [2].

V2V hazard alert systems have the potential to mitigate traffic congestion with higher penetration rates, particularly if it can provide lane-specific information about incidents [3].

Cooperative ACC is able to increase capacity at moderate to high market penetration rates [4].

A research study on a congestion assistant prototype has concluded that [6]:

- Participants generally did not appreciate automatic actions from vehicle, except during congested conditions.
- All variants of the system resulted in less congestion and higher congestion outflows compared to reference situation.
- Average delay time is decreased by 30% with a penetration rate of 10% and up to 60% with a penetration rate of 50%.
- Some variants of the system led to higher percentages of hard-braking due to a smaller minimum headway.

CVHA has also been claimed by manufacturers to provide congestion benefits. For example, Ford Motor Company claims that “individual simulation studies have found that where 25% of vehicles on a stretch of road are equipped to automatically follow traffic ahead, journey times can be reduced by 37.5% and delays by 20%.”
Capacity: Maximum Sustainable Flow

Speed Flow Density Curve from the Highway Capacity and Quality of Service Manual

http://www.ops.fhwa.dot.gov/publications/fhwaops09017/008_section_2.htm

http://www.clarksvillesmartgrowth.com/Sec3-TransportationAnalysis.htm
A few capacity factors:

- Is there dedicated infrastructure?
- What following distance is allowed?
- Willingness of drivers in traditional manned vehicles to interact driverless vehicles?
- Are traffic laws strictly enforced?

How aggressive are drivers in the non-driverless vehicles?
Simulation

- Off-The Shelf (VISSIM) vs Custom
- VISSIM
  - Parameter sensitivity
  - COM
  - EDM
Simulation – What Parameters Matter

• VISSIM Parameter sensitivity
  – A Monte Carlo experiment
  – Influence on travel time and capacity
  – 29 driving parameters
  – Randomly generated 1000 parameter sets simulated in VISSIM.
  – 12.5-mile, three-lane freeway segment with an on-ramp merging at approximately mile 9.5. Each simulation runs for a total of 8 simulated hours.
VISSIM Parameter Studies

- Selected MOEs

<table>
<thead>
<tr>
<th>Section</th>
<th>MOE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-Long</td>
<td>MOE</td>
<td>Mainline from start to end</td>
</tr>
<tr>
<td>EB-Short</td>
<td>Travel Time</td>
<td>Merge point as center, 1000 feet upstream/downstream</td>
</tr>
<tr>
<td>Ramp-Long</td>
<td>Travel Time</td>
<td>From ramp start to mainline end</td>
</tr>
<tr>
<td>Ramp-short</td>
<td></td>
<td>Merge point as center, 1000 feet upstream/downstream</td>
</tr>
</tbody>
</table>
VISSIM Parameter Studies

• Parameter Elimination Procedure
  – Generate 1,000 sets of random parameters as input;
  – Run simulation for 1000 runs and record travel time, delay and speed-flow as selected;
  – For each MOE, draw the scatter plot with respect to all parameters and perform linear regression on mean, 5% percentile and 95% percentile;
  – Compute Effect on the Mean (EOM) = Slope of linear regression*parameter range;
  – Eliminate those parameters with three or more EOMs less than 5%, while examine their variability’s change manually;
  – Eliminate no more the 25% of parameters, iterate process.
### Full parameter list

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Desired speed distribution</td>
</tr>
<tr>
<td>2</td>
<td>Look Ahead Distance Min. (ft)</td>
</tr>
<tr>
<td>3</td>
<td>Look Ahead Distance Max. (ft)</td>
</tr>
<tr>
<td>4</td>
<td>Number of Observed Vehicles</td>
</tr>
<tr>
<td>5</td>
<td>Look Back Distance Min. (ft)</td>
</tr>
<tr>
<td>6</td>
<td>Look Back Distance Max. (ft)</td>
</tr>
<tr>
<td>7</td>
<td>CC0 standstill distance (ft)</td>
</tr>
<tr>
<td>8</td>
<td>CC1 headway time (s)</td>
</tr>
<tr>
<td>9</td>
<td>CC2 following variation (ft)</td>
</tr>
<tr>
<td>10</td>
<td>CC3 threshold for entering 'following'</td>
</tr>
<tr>
<td>11</td>
<td>CC4 negative following threshold</td>
</tr>
<tr>
<td>12</td>
<td>CC5 positive following threshold</td>
</tr>
<tr>
<td>13</td>
<td>CC6 speed dependency of oscillation</td>
</tr>
<tr>
<td>14</td>
<td>CC7 oscillation acceleration (ft/s^2)</td>
</tr>
<tr>
<td>15</td>
<td>CC8 standstill acceleration (ft/s^2)</td>
</tr>
<tr>
<td>16</td>
<td>CC9 acceleration at 80 km/hr (ft/s^2)</td>
</tr>
<tr>
<td>17</td>
<td>Maximum deceleration (own)</td>
</tr>
<tr>
<td>18</td>
<td>Maximum deceleration (trailing)</td>
</tr>
<tr>
<td>19</td>
<td>Accepted deceleration (own)</td>
</tr>
<tr>
<td>20</td>
<td>Accepted deceleration (trailing)</td>
</tr>
<tr>
<td>21</td>
<td>Reduction rate (as ft per 1 ft/s2) (own)</td>
</tr>
<tr>
<td>22</td>
<td>Reduction rate (as ft per 1 ft/s2) (trailing)</td>
</tr>
<tr>
<td>23</td>
<td>Waiting time before diffusion</td>
</tr>
<tr>
<td>24</td>
<td>Minimum headway (front/rear)</td>
</tr>
<tr>
<td>25</td>
<td>Safety distance reduction factor</td>
</tr>
<tr>
<td>26</td>
<td>Maximum deceleration for cooperative braking</td>
</tr>
<tr>
<td>27</td>
<td>Emergency stop distance</td>
</tr>
<tr>
<td>28</td>
<td>Lane change distance</td>
</tr>
<tr>
<td>29</td>
<td>Random seed number</td>
</tr>
</tbody>
</table>
Current List

• Currently, the following variables show some effect on mainline travel time and capacity (pending final results of experiment):
  ➢ CC0 - Standstill Distance
  ➢ CC1 - Headway Time
  ➢ CC2 - Following Variation
  ➢ CC4/CC5 - Negative/Positive ‘Following’ Threshold
  ➢ Safety Distance Reduction Factor
  ➢ Max. Deceleration for Cooperative Braking
  ➢ Lane Change Distance
Influence of Standstill Distance on Mainline Travel Times (Left) and 95\textsuperscript{th} Percentile Capacities (Right)
Influence of Headway Time on Mainline Travel Times (Left) and 95th Percentile Capacities (Right)
Influence of Following Variation on Mainline Travel Times (Left) and 95th Percentile Capacities (Right)
Influence of Safety Distance Reduction Factor on Mainline Travel Times (Left) and 95th Percentile Capacities (Right)
Time Space Diagram of Simulated Mainline Vehicles
VISSIM COM Interface

– VISSIM offers Component Object Model (COM)
– COM interface defines a hierarchy model of objects, in which the functions and parameters of the simulator may be read, and in some cases manipulated by programming scripts dynamically.
– COM interface provides access to model data and objects during simulation, and allows VISSIM to work as automation server and to export objects and data.
VISSIM COM Interface

COM interface
Architecture
Simulation Analysis Tools

VISSIM
- Microscopic traffic simulator by PTV
- Representation of driver behavior including car-following and lane-changing
- Public transportation, pedestrian, bicycle etc.
- Evaluation of various traffic management strategies: ITS evaluation, work-zone, freeway toll plaza etc.

VISSIM COM-Interface
- Control input parameter or receive output at every simulation time-step by external API based on .NET programming

VISSIM
Input Parameter
Simulation run
Output (Travel time, speed, etc.)

.NET Script
Interactions between COM and VISSIM Simulator

VISSIM Simulator

- Simulation run for time step t
  - Car-following & Lane-changing algorithms

- Object status and parameters input
  - Signal state, vehicle position, speed, lane, etc.

Output (travel time, speed, delay, etc)

COM Script

- Computations for parameters' update
- Data analysis

Car-following & Lane-changing algorithms
**VISSIM COM Interface**

- **COM capabilities**
  - Generate traffic on desired lane at desired location (more specific and tractable traffic input);
  - Dynamically modify the properties of traffic objects, e.g. vehicle’s type, length, color, lane, desired speed;
  - Access arbitrary vehicle by ID (e.g. V2V communication may be mimicked);

- **COM Limitations**
  - Not all parameters are writable (e.g., acceleration), so it’s difficult to gain full control of a vehicle’s movement;
  - No trivial way to search for adjacent vehicles, makes it less efficient to find target vehicle for decision-making;
  - Difficult to overwrite the default lane-changing logic;
  - Runtime efficiency issue.
External Driver Model (EDM)

• Introduction
  – External Driver Model DLL interface of VISSIM is an Application Program Interface (API) provided to replace the internal driving behavior with a fully user-defined model.
  – EDM is applied to specific vehicle type separately.
  – The car-following behavior and lane-changing behavior may be fully controlled by EDM’s algorithm. VISSIM is only responsible for passing parameter values to EDM module and retrieving them back to VISSIM simulation.
EDM DLL Interface

• Interactions between EDM and VISSIM Simulator

VISSIM Simulator

Simulation run

EDM DLL

object status and parameters input (signal state, vehicle position, speed, lane, etc)

Output (travel time, speed, delay, etc)
External Driver Model (EDM)

- **EDM Capabilities**
  - Fully control the movement of a vehicle, i.e. car-following and lane-changing algorithms;
  - Easily communicate with adjacent vehicles with predefined function;

- **EDM Limitations**
  - Only have access to vehicles within the assigned type, may not track the others by ID;
  - Not network-specific, have no information regarding links, routes, vehicle types of the other vehicles;
  - Information on adjacent vehicles are limited, can read no more than 2 vehicles upstream/downstream;
  - May only dynamically modify subject vehicle
External Driver Model (EDM)

• Run Configuration
  – Duration: Simulation Time = 1 hours
  – Section Length: 2-lane Mainline = 3280ft (starting from merge point to the end of mainline)
  – Output: Travel Time data, Delay Time data, Trajectory plot

Aggressive Vehicle Input

Travel Time Section: 2460ft (750m)

Regular + Autonomous Vehicle Input
Combinations of COM and EDM

- COM is responsible for tracking target vehicles, modifying vehicle attributes and making lane-change decisions while EDM is responsible for vehicle’s movement.

- A concern of combination is efficiency issue.
Current Example

Right Lane – 200 vph - Aggressive
Left Lane – 1950 vph – 20% Autonomous, 80% Default
Trajectories Aggressive Drivers
Trajectories Autonomous
Trajectories Other Right Lane
Conclusion – Next Steps

• COM and EDM interface
• Scenario development
• Validation?
• Assumptions, Assumptions, Assumptions
References

1. Shladover 2008, Final Report No. CA04-0494
3. Yeo et al. 2010, TRR: Journal of TRB No. 2189: 68-77
6. Van Driel 2007, PhD Diss. U of Twente, NL
Other Potentially usable Slides
VISSIM Parameter Studies

- Significant Parameters (Average Travel Time as MOE)
  - CC1-Headway Time
  - Safety Distance Reduction Factor
VISSIM Parameter Studies

Significant Parameters (Average Travel Time as MOE)

CC2-Following Variation

CC5-Positive ‘Following’ Threshold
VISSIM Parameter Studies

Significant Parameters (Average Travel Time as MOE)

Max Deceleration for cooperative braking

Lane change distance
VISSIM Parameter Studies

Insignificant Parameters (Average Travel Time as MOE)

Max Look-Ahead Distance

Min Look-Ahead Distance
VISSIM Parameter Studies

- Insignificant Parameters (Average Travel Time as MOE)

Max Look-back Distance

Speed Dependency of Oscillation
What is CVHA?

• Definition

CVHA systems are systems that provide driving control assistance, or fully automated driving, and are based on information about the vehicle’s driving environment that can be received by communication from other vehicles (V2V) or from the infrastructure (V2I), as well as from their own on-board sensors [1].

• Typical Tasks

- Lateral movement (lane departure warning, lane keeping assistant, etc.)
- Forward movement (adaptive cruise control, cross-traffic monitor, etc.)
- Reverse movement (rear view camera, cross-traffic monitor, etc.)
- Crash avoidance/severity reduction (forward collision warning, etc.)
- Parking (parking assistant)
- Attention monitoring
- Congestion-driving assistance (traffic jam assistant, congestion assistant)
Network Preparation
- Network

Scenario Development
- various traffic conditions

Simulation Analysis
- Extract individual vehicle trajectory

MOE Derivation
- MOEs for each scenario
- operational efficiency,

Effectiveness Evaluation for Advanced Driver Assistance Systems
Step 1. Network Preparation

- Network

Step 2. Scenario Development

- various traffic conditions

Step 3. Simulation Analysis

- Extract individual vehicle trajectory

Step 4. MOE Derivation

- MOEs for each scenario
- operational efficiency
Network Preparation
- network

Scenario Development
- traffic

Simulation Analysis
- Control vehicle maneuvering
- Extract individual vehicle trajectory

MOE Derivation
- MOE for operational efficiency
- MOE for safety
VISSIM

Parameter Input

Vehicle trajectory data at time T

System Algorithm

Decision Control Parameters of Subject Vehicle

Output

MOE analysis

Vehicle trajectory data

Average Delay

NCTSPM

Florida International University

Georgia Institute of Technology

Georgia Transportation Institute

Georgia Department of Transportation