Project Information Form

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Reducing Interactive Service Interruptions in Linear Infrastructure Systems (Transportation, Water/Sewer, Power) by Synchronizing Schedules for Appropriate Maintenance Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>University</td>
<td>Florida International University</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Prof. Berrin Tansel</td>
</tr>
</tbody>
</table>
| **PI Contact Information** | Florida International University (FIU)
Civil and Environmental Engineering Department, Engineering Center
Miami, FL 33174
Tel:305 348 2928
Fax: 305 348 2802
e-mail: tanselb@fiu.edu |
| **Funding Source(s) and Amounts Provided (by each agency or organization)** | NCTSPM - $50,000
Florida International University - $50,000 |
| **Total Project Cost** | $100,000 |
| **Agency ID or Contract Number** | DTRT12GUTC12
NCTSPM 2013-004 |
| **Start and End Dates** | 11/1/13 – 05/31/15 |
| **Brief Description of Research Project** | Linear infrastructure systems (roads, water/sewer/power lines) are often interdependent due to the similarities in their design purposes to provide the necessary services. Hence, they are vulnerable to possible domino effects which can impact both the health and economic well being of communities. The key impacts of bottlenecks in interdependent linear infrastructure systems (ILIS) are reduction of system reliability and oscillations in service delivery capacity. In ILIS events are linked by time and dynamics of the interactions between the systems. This research will demonstrate quantitatively infrastructure limitations (design and operation) for coastal communities, identification of critical bottlenecks for service quality and propagation of domino effects in ILIS.
Objectives of this research are to:
1. Characterize service interruption profiles in ILIS;
2. Provide an dynamic analysis of interactions in ILIS;
3. Identify interactively the major events increasing the stress and service bottlenecks;
4. Develop an interactive tool to establish checkpoints for service |
The following tasks will be conducted during the study.

Task 1. Preliminary analyses

Task 2. Identification of service interruption hazard modes

Task 3. Profiling, classification and rating of hazard modes

Task 4. Service quality and priority assessment

The methodology was evaluated by a case study for the downtown area in Miami, Florida. The quantitative risk analyses were conducted for the impacts on transportation network due to pipeline network failures in water and sewer utility lines.

Impacts/Benefits of Implementation (actual, not anticipated)

Task 1. Preliminary analyses: Preliminary analysis work plan was developed.

Task 2. Identification of service interruption hazard modes:
This task focuses on: 1. Causes of service quality decline and interruptions, 2. Service quality and system redundancy, 3. Service quality. This task will be initiated in March 2013.

Task 3. Profiling, classification and rating of hazard modes
A rating system (metrics) for different service interruption hazard modes are being developed. A preliminary criteria was developed.

Task 4. Service quality and priority assessment: This task has not been initiated yet.

Web Links

- Reports
- Project website

Names of students who are financially supported by this

Bahareh Inanloo
<table>
<thead>
<tr>
<th>grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names of students who are participating (but not financially supported) by this project</td>
</tr>
<tr>
<td>Alex Smith-Prance</td>
</tr>
</tbody>
</table>